本书介绍
大语言模型(LLM)正在改变世界,承诺自动化任务并解决复杂问题。新一代的软件应用程序正在将这些模型作为构建块,释放几乎每个领域的新潜力,但要可靠地访问这些能力,需要掌握新的技能。本书将教你提示工程的艺术与科学——解锁LLM真正潜力的关键。
行业专家 John Berryman 和 Albert Ziegler 分享了如何与人工智能有效沟通,将你的想法转化为语言模型友好的格式。通过学习哲学基础和实践技巧,你将获得知识和信心,能够构建下一代基于LLM的应用程序。
-
理解LLM架构并学习如何与其最佳互动
-
设计应用程序的完整提示制作策略
-
收集、整理并呈现上下文元素,以创建高效提示
-
掌握特定的提示制作技巧,如少量样本学习(few-shot learning)、思维链提示(chain-of-thought prompting)和RAG(retrieval-augmented generation)
作者介绍
John Berryman 是 Arcturus Labs 的创始人兼首席顾问,专注于LLM应用程序开发。他的专业知识帮助企业利用先进的人工智能技术。作为 GitHub Copilot 的早期工程师,John 为其自动补全和聊天功能的发展做出了贡献,处于人工智能辅助编程工具的前沿。
在参与Copilot的工作之前,John在搜索引擎领域建立了令人印象深刻的职业生涯。他的多元化经验包括帮助开发美国专利局的下一代搜索系统,为 Eventbrite 构建搜索和推荐系统,并为 GitHub 的代码搜索基础设施做出贡献。John 还是《Relevant Search》(Manning)的共同作者,该书总结了他在搜索领域的专业知识。
John 在尖端人工智能应用和基础搜索技术方面的独特背景,使他处于LLM应用和信息检索创新的前沿。
Albert Ziegler 早在LLM应用成为主流之前,就开始设计以人工智能驱动的系统。作为 GitHub Copilot 的创始工程师,他设计了其提示工程系统,并帮助激发了一波 AI 驱动工具和“Copilot”应用程序的浪潮,塑造了开发者辅助和LLM应用程序的未来。
如今,Albert 继续在 AI 技术的前沿推动边界,担任 AI 网络安全公司 XBOW 的 AI 部门负责人。在那里,他领导将大语言模型与尖端安全应用结合的工作,致力于保护未来数字世界的安全。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓