大模型新书丨利用基础大模型构建智能应用,AI工程化落地必读书籍,强烈推荐!

本文推荐一本关于 AI 工程的书籍《AI Engineering: Building Applications with Foundation Models》,个人认为是目前最好的关于基于大模型的 AI 工程的书籍,涵盖适合核心原理、开发流程与策略、数据集处理、提示工程、RAG、微调、智能体等内容,内容覆盖全面,从入门到进阶,很适合 AI 工程的开发者阅读,强烈推荐!

书籍简介

近年来 AI 领域的重大突破不仅大幅增加了市场对AI产品的需求,同时也显著降低了构建AI产品的准入门槛。"模型即服务"的创新模式,将AI从一门高深的学科转变为人人可用的强大开发工具。如今,任何开发者(包括那些几乎没有AI经验的人)都能利用现成的AI模型来构建应用程序。在这本著作中,作者 Chip Huyen将深入探讨 AI 工程这一新兴领域:即如何利用现成的基础大模型开发应用程序的全过程。

本书开篇概述了AI工程的核心概念,阐明其与传统机器学习工程的区别,并解析了全新的AI技术栈。随着AI应用范围的扩大,潜在的重大系统风险也随之增加,这使得对AI系统的评估变得至关重要。书中详细探讨了评估开放式模型的多种方法,包括当前快速发展的"AI评判法"这一创新评估范式。

对于AI应用开发者而言,本书将指引您游刃有余地驾驭 AI 生态圈:从模型选择、数据集处理到评估基准的建立,以及面对海量应用场景和模式时的决策路径。您将系统掌握AI应用开发的完整框架——从基础技巧入门,逐步进阶到复杂方法,并学会如何高效部署这些应用。

通过本书您将:

  • 深入理解 AI 工程的内涵及其与传统机器学习工程的区别
  • 掌握AI应用开发的完整流程,识别各阶段挑战并学习应对策略
  • 系统学习包括提示工程、RAG、微调、智能体、数据集工程在内的多种模型调适技术,洞悉其工作原理
  • 剖析基础模型服务的延迟和成本瓶颈,掌握优化解决方案
  • 建立科学的选择方法论:根据需求精准匹配模型、数据集、评估基准和度量指标

该书籍的相关资源,在 github 可访问:https://github.com/chiphuyen/aie-book

作者 Chip Huyen 现任Voltron Data公司 GPU 数据分析加速专家,曾任 Snorkel AI 和 NVIDIA 技术专家,创立过AI基础设施初创公司,并在斯坦福大学教授《机器学习系统设计》课程。她撰写的《机器学习系统设计》一书曾登顶亚马逊AI类图书畅销榜。

本书面向的人群

本书适用于任何希望利用基础模型解决实际问题的人。这是一本技术类书籍,因此其语言面向技术角色,包括人工智能工程师、机器学习工程师、数据科学家、工程经理和技术产品经理。如果您符合以下任一情况,那么这本书适合您:

  • 您正在构建或优化一个人工智能应用,无论是从零开始,还是希望从演示阶段过渡到可投入生产的阶段。您可能还面临幻觉、安全性、延迟或成本等问题,需要针对性的解决方案。
  • 您希望简化团队的人工智能开发流程,使其更加系统化、快速和可靠。
  • 您希望了解您的组织如何利用基础模型来改善业务的底线,以及如何组建一个团队来实现这一目标。

如果您属于以下群体之一,您也可以从本书中受益:

  • 工具开发者,希望识别人工智能工程中未得到充分服务的领域,以定位您的产品在生态系统中的位置。
  • 研究人员,希望更好地了解人工智能的用例。
  • 求职者,希望明确从事人工智能工程师职业所需的技能。
  • 任何希望更好地了解人工智能的能力和局限性,以及它可能如何影响不同角色的人。

目录

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值