继 Dify 和 FastGPT 之后,我又玩了一下 RAGFlow

Dify 虽然称得上是开源版的 Coze,但是它的知识库能力一直比较拉垮,在这一点上 FastGPT 也是强于它的。

既然说 AI 知识库是它的强项,那具体强大在哪里?以及如何部署或者说如何体验呢?别着急,我们一起往下看~

部署

最低配置

部署 RAGFlow 有一个硬性条件,机器配置不能太低。官网推荐最低配置需要满足:

  • CPU ≥ 4 cores;
  • RAM ≥ 16 GB;
  • Disk ≥ 50 GB;
  • Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1.

这个配置要求真的不低了,要知道部署 Dify 的推荐要求是 2 核 4G,而部署 FastGPT 生产首选版本的最低要求是 2 核 8 G,RAGFlow 直接翻倍。

为什么会需要这么大配置?
首先,它的镜像就很大,0.13.0 版本的镜像已经大到了 19.53 GB;
其次,RAGFlow 是一个基于深度文档理解的开源 RAG(检索增强生成)引擎。为了实现对文档的深入分析和处理,其模型需要大量的计算资源和存储空间,以确保能够高效地执行复杂的查询和生成任务。

调整内核参数

满足以上配置之后,在部署之前我们还需要检查一下机器的 vm.max_map_count 也就是内核参数。一般默认是 65530,但是为了满足 Elasticsearch 进行多次召回,我们需要将其设置为 大于等于 262144。这一步至关重要!!

max_map_count 内核参数定义了一个进程可以拥有的最大虚拟内存区域。
它主要影响高并发或者高资源需求的应用程序的性能和稳定性,比如 Elasticsearch、Redis、数据库系统等。
刚好,这三样 RAGFlow 它都有。

对于 Linux 系统来说,我们可以通过输入以下命令来查看 max_map_count 的大小:

如果小于 262144,那么需要执行以下命令将 max_map_count 重置为至少 262144 的值:

sudo sysctl -w vm.max_map_count=262144
⚠️注意:这个设置会在系统重启后重置。如果要永久修改这个值,需要在 /etc/sysctl.conf 中进行修改或者添加。

clone 项目仓库

git clone https://github.com/infiniflow/ragflow.git

Docker 启动

jio do ma dai~

启动之前大家伙也要注意一下镜像版本,对于 dev-slim 的镜像版本来说,因为镜像中不包含 embedding 模型和 Python 库,所以大小是 1GB 左右。但是如果是类似我上面说的 v0.13.0 版本,它的大小足足有 19.53GB。

大家可以根据需要在 docker/.env 配置文件中修改镜像版本,比如:RAGFLOW_IMAGE=infiniflow/ragflow:v0.13.0-slim

cd ragflow/docker

docker compose -f docker-compose.yml up -d

如果大家因为网络原因无法正常拉取镜像和模型,可以在 docker/.env 文件中根据注释修改 RAGFLOW_IMAGEHF_ENDPOINT

那如何查看项目是否已经部署好了呢?我们可以执行以下命令:

docker logs -f ragflow-server

如果出现以下信息说明系统已经成功启动了!~

     ____   ___    ______ ______ __
    / __ \ /   |  / ____// ____// /____  _      __
   / /_/ // /| | / / __ / /_   / // __ | | /| / /
  / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ /
 /_/ |_|/_/  |_|____//_/    /_/ ____/ |__/|__/

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:9380
 * Running on http://x.x.x.x:9380
 INFO:werkzeug:Press CTRL+C to quit∅

使用

因为 RAGFlow 启动之后,默认的对外端口是 80,所以我们可以直接通过 IP 地址即可进行访问:

这里需要先注册一下,然后再登录:

OK,到现在为止我们已经成功登录部署好的 RAGFlow 了。

接下来还需要再在设置页面设置一下 AI 大模型,因为是主打知识库的系统,所以除了一般的 AI 聊天模型之外,我们还需要 embedding 模型(有 Rerank 模型更好!!)。

配置模型

Qwen/Qwen2.5-7B-Instruct 和 Jina 的嵌入模型为例。

设置步骤:

  1. 点击右上角的头像
  2. 选择左侧菜单中的「模型提供商」
  3. 在「待添加的模型」中选择要使用的模型供应商
  4. 配置好供应商的 API key 之后,点击右上角的「系统模型设置」
  5. 在弹出的对话框中选择要设置的模型,点击保存即可。

创建知识库

回到知识库页面,点击右上角的「创建知识库」创建一个新的知识库,比如 k8s:

点击确定之后进入知识库的配置页面:

这里可以配置语言,默认是英文,我们可以将其改为中文。在下方配置中还有「解析方法」的选项,种类繁多,感兴趣的小伙伴下来可以自行研究,这里只做 demo 展示,我们就使用默认的 General。

回到数据集这里,我们需要为这个知识库增加数据来源,上传一个老演员《深入浅出 k8s》,然后点击表格内的绿色播放按钮开始解析文件:

解析过程需要一定的时间,大家耐心等待即可。

解析成功之后我们到「聊天」页面,如果不进行任何设置,是无法新增聊天的。所以我们需要先「新建助手」:

接下来点击聊天旁边的「+」号新增一条聊天:

我们简单的来提问一下:

回答是没有问题的,不过也感觉没有什么亮点。但你仔细看:

  • 鼠标 hover 到答案时,会展示几个图标,我们点击最右侧的灯泡图标会发现它将答案中涉及到的内容都统一到了这里;

  • hover 答案中的小图标时,会将这段内容的来源展示出来

  • 如果回答的内容过长,还可以通过「继续」的方式来实现长文本输出;
  • 同时回答的下方也会给出答案是出自哪些文件。

测试其他功能

除了知识库之外,还有搜索、Agent 和文件管理。其中搜索是可以直接搜索知识库中内容,类似这样:

还有 Agent,在 RAGFlow 中除了第一个「Blank」是可以自定义 Agent 的之外,其他几个都是内置的 Agent 模板:

对于文件管理来说,顾名思义,这里可以对已经上传的文件进行管理。

对比

  • 从 Agent 的功能上来说,RAGFlow 的 Agent 能力是弱于 Dify 的,而且 RAGFlow 的 Agent 实际上是 Workflow;
  • 在知识库数据集的来源上,Dify 还支持 Notion 和 Web 站点,但 RAGFlow 目前只支持本地上传;
  • 但话说回来,在知识库检索以及回答这块,RAGFlow 明显强于 Dify;

  • RAGFlow 的搜索功能可以输出长文本,Dify 目前还不行;
  • RAGFlow 的回答如果没有输出结束,还能继续回答;

  • RAGFlow 没有提供单开对话页面的功能,只提供了 API 的能力;而 Dify 不但能单开页面和支持 API,还能直接嵌入到外部的 Web 站点;

总得来说,如果是企业内部需要一个比较牛的 AI 知识库系统,推荐使用 RAGFlow;对于个人用户的话,如果对知识库能力的要求不那么高,Dify 完全是够用的。毕竟 RAGFlow 的配置太高于 Dify 的,如果是想搭建比较私密的 AI 知识库,那么还需要部署本地 AI,此时哪怕是 4 核 16G 都有些不够用了。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值