Leetcode 120. Triangle

120. Triangle

题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

解题思路

采用动态规划的方法。自底向上对每一行进行遍历,用minPathSum[i][j]表示从最底层到达第i行的第j个元素的最小路径和。初始时i = trianglel.size()-1; minPathSum[i][j] = triangle[i][j];,注意到上一层第j个元素的最小路径和等于下一层的第j个和第j+1元素的最小路径和中较小的一个加上当前元素的值,因此,状态转移方程为minPathSum[i][j] = min(minPathSum[i+1][j], minPathSum[i+1][j+1]) + triangle[i][j];。最终我们遍历到顶层,得到minPathSum[0][0]就是从最底层到顶层的最小路径和,即从最顶层到底层的最小路径和。注意到minPathSum其实只用使用长度为n(n为行数)的一维数组,因为我们从下至上,从左至右计算,将计算出的结果继续储存在minPathSum一维数组中不会影响结果,空间复杂度为 O ( n ) O(n) O(n)。由于要计算所有元素的minPathSum且计算每个元素的minPathSum的时间复杂度为常数,因此时间复杂度为 O ( n 2 ) O(n^2) O(n2)

代码如下:

class Solution {
public:
  int minimumTotal(vector<vector<int>>& triangle) {
    if (triangle.size() == 0) return 0;
    vector<int> minPathSum = triangle[triangle.size()-1];
    for (int i = triangle.size() - 2; i >= 0; i--) {
      for (int j = 0; j < i + 1; j++) {
        minPathSum[j] = min(minPathSum[j], minPathSum[j+1]) + triangle[i][j];
      }
    }
    return minPathSum[0];
  }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值