【金华集训 && 数论】 概率期望

概念

对于一个随机变量 X X X,它的取值有 x 1 , x 2 , x 3 … … x_1,x_2,x_3…… x1,x2,x3,一个随机事件可以表示为 X = X i X=X_i X=Xi,其概率为 P ( X = X i ) = p i P(X=X_i)=p_i P(X=Xi)=pi.
那么我们称 E ( X ) = ∑ p i x i E(X)=\sum p_ix_i E(X)=pixi为随机变量X的数学期望。通俗的讲,数学期望就是随机变量取值与其概率的乘积之和。

独立事件:互不影响的事件


一些性质

1、如果 0 &lt; x &lt; 1 0&lt;x&lt;1 0<x<1,那么 ∑ i = 0 n x i = 1 − x n + 1 1 − x \sum^n_{i=0}x^i=\frac{1-x^{n+1}} {1-x} i=0nxi=1x1xn+1这是一个等比数列的求和公式.

2、由1可以进而推得 ∑ i = 0 正 无 穷 x i = 1 1 − x \sum^{正无穷}_{i=0}x^i = \frac1{1-x} i=0xi=1x1

3.数学期望的线性性

  • E ( x + y ) = E ( x ) + E ( y ) E(x+y) = E(x)+E(y) E(x+y)=E(x)+E(y)

4、通过前缀和得到的一个性质

  • P ( x = k ) = P ( x &lt; = k ) − P ( x &lt; = k − 1 ) P(x=k) = P(x&lt;=k) - P(x&lt;=k-1) P(x=k)=P(x<=k)P(x<=k1) 这个性质很显然吧

5、如果某件事的概率为P,那么其期望就位 1 p \frac 1 p p1

6、如果对于两个独立事件, P ( A B ) = P ( A ) ∗ P ( B ) P(AB)=P(A)*P(B) P(AB)=P(A)P(B)

7、如果对于两个独立事件, E ( A B ) = E ( A ) ∗ E ( B ) E(AB)=E(A)*E(B) E(AB)=E(A)E(B)


经典题目选讲

一、在一张 n 个点的完全图上游走,求从一个点走到另一个点的期望步数
  • 显然,这是一张完全图,每一个点都连接出去了n-1条边,所以对于一个点,从它走向另一个点的概率为 1 n − 1 \frac 1 {n-1} n11,根据性质5,即可得到期望为n-1
二、在一张 2n 个点的完全二分图上游走,求从一个点走到另一个点的期望步数
  • 我们设 A : 一 个 点 到 达 同 侧 点 的 期 望 步 数 A:一个点到达同侧点的期望步数 A:
  • B : 一 个 点 到 达 异 侧 点 的 期 望 步 数 B:一个点到达异侧点的期望步数 B:
  • 很显然得到:
  • B = n 1 ∗ 1 + n − 1 n ∗ ( A + 1 ) B=\frac n 1* 1+\frac{n-1}n*(A+1) B=1n1+nn1(A+1)(一个点直接走到异侧点 && 一个点先到达异侧点后按照同侧点的走法)
  • A : 1 + B A:1+B A:1+B(先走到异侧点,后按照异侧点的走法)
  • 解方程即可得到答案
三、在一张 n 个点的菊花图上游走,求从一个点走到另一个点的期望步数
  • 考虑菊花图的特殊性,菊花图分为两个部分:中心以及叶子,我们对这两个部分进行讨论:
  • 叶子->叶子--------A
  • 叶子->中心---------1
  • 中心->叶子---------B
  • 对于第二个讨论很显然就是一步,关键就是对A和B的讨论
  • 对于叶子都走到叶子,可以先由叶子都到中心,再有中心走到叶子:
  • A = 1 + B A=1+B A=1+B
  • 对于中心走到叶子,可能是直接走到叶子,也可能是走到其他叶子在执行A
  • B = 1 n − 1 ∗ 1 + n − 2 n − 1 ∗ ( 1 + A ) B=\frac 1{n-1}*1+\frac{n-2}{n-1}*(1+A) B=n111+n1n2(1+A)
  • 解方程即可

来一道傻逼题

四、随机一个长度为 n 的排列 p,求 i 在 j 的后面的概率
  • 这、、确实是一道傻逼题。
  • 分类讨论即可
  • 1、 i 不 等 于 j i不等于j ij,哈哈,概率就为 1 2 \frac 1 2 21,要么在后面要么不在后面
  • 2、如果i==j,概率为0.
  • 傻逼吧。。。。
五、在一条 n 个点的链上游走,求从一端走到另一端的期望步数
  • 首先仍然是按照套路来
  • E ( y ) = ∑ i = 1 n x i E(y) = \sum_{i=1} ^n x_i E(y)=i=1nxi
  • 其中 x i x_i xi表示从第i个点游走到i+1个点的期望步数
  • 很显然, x 1 = 1 x_1=1 x1=1
  • 试着推 x 2 x_2 x2,第二个点可能直接走到第三个点,这是就是 1 2 ∗ 1 \frac12*1 211,而也可能走到1号点,这是就需要通过 x 1 x_1 x1, x 2 x_2 x2来走到,即 1 2 ∗ ( x 1 + x 2 + 1 ) \frac12*(x_1+x_2+1) 21(x1+x2+1)
  • 成功推到 x n x_n xn x n = 1 2 ∗ 1 + 1 2 ∗ ( x n − 1 + x n + 1 ) x_n=\frac12*1+\frac12*(x_{n-1}+x_n+1) xn=211+21(xn1+xn+1)
  • 通过解方程得到 x n = x n − 1 + 2 x_n = x_{n-1}+2 xn=xn1+2
  • 这个序列就是 1 , 3 , 5 , 7 , 9 … … 2 ∗ n − 1 1,3,5,7,9……2*n-1 1,3,5,7,92n1
  • 那么这个答案便是这个序列的 ∑ i = 1 n − 1 x i \sum_{i=1}^{n-1} x_i i=1n1xi
  • 显然答案为 ( n − 1 ) 2 (n-1)^2 (n1)2
六、在一棵 n 个点的树上游走,求从根走到 x 的期望步数
  • f [ x ] 表 示 从 第 x 个 点 开 始 第 一 次 走 到 他 的 父 亲 节 点 的 期 望 步 数 f[x]表示从第x个点开始第一次走到他的父亲节点的期望步数 f[x]x
  • 答案就是 f [ x ] + f [ f a [ x ] ] + f [ f a [ f a [ x ] ] ] + … … 一 直 加 到 根 节 点 的 儿 子 f[x]+f[fa[x]]+f[fa[fa[x]]]+……一直加到根节点的儿子 f[x]+f[fa[x]]+f[fa[fa[x]]]+
  • 我们还设d[x]表示x的度数(1+它的儿子个数)
  • 得到如下的分类讨论:
  • 1 d [ x ] ∗ 1 \frac 1{d[x]}*1 d[x]11 -----------直接走到他的父亲
  • 1 d [ x ] ∗ ( 1 + f [ y ] + f [ x ] ) \frac1{d[x]}*(1+f[y]+f[x]) d[x]1(1+f[y]+f[x]) ---------------其中 y ∈ s o n ( x ) y\in son(x) yson(x)
  • 加起来即可
  • 同样是解方程

差不多就这些,以后看到一些性质以及好的例题我会记得补充

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值