数据与广告系列二十六:知识迁移的Embedding应用,智能化定向的解药

本文探讨了效果广告后定向时代面临的挑战,提出智能定向结合智能拓量的解决方案。针对如何推荐广告标签,作者指出直接通过广告与标签建模存在数据稀疏等问题,转而探讨知识迁移的Embedding应用。通过广告*USER的海量数据建立模型,迁移知识到广告*TAG的关系,训练得到的AD和TAG的embedding可以计算两者的关系,从而提升定向的智能化水平。文章还提及了网络结构的优化、预训练以及多目标优化等未来发展方向。
摘要由CSDN通过智能技术生成

作者·黄崇远

『数据虫巢』

全文共4348

题图ssyer.com

 效果广告后定向时代,虽有千般万难,我们一样还得解决定向智能的问题。

需要提前说明的是,这一篇会涉及到本系列之前聊过的不少相关话题,可能需要一定的前置了解,才更好的对于本篇文章需要解决的问题做好的理解。

01

效果广告后定向时代

我们在上上一篇《数据与广告系列二十四:效果广告后定向时代如何逆流而上》中,有几个观点需要重新申明一下,偏于我们后续内容的开展。

  • 效果广告的oCPX状态是一个中间过渡状态,一个广告平台与广告主相互妥协的一种“临时”解决方案。

  • 目前应该说绝大部分不管是主流还是非主流的广告平台,都还做不到真正的CPA预估,当然广告主也大部分不愿为单纯的CPC买单。

  • 基于oCPX为主流的投放模式中,使用定向的情况下其大部分时候效果会优于不做任何限制的oCPX投放。

所以,我们在上上一篇中提出的逻辑就是,智能定向加智能拓量的逻辑,智能定向解决初始流量精准圈选以及快速累积oCPX一阶段所需转化的问题,拓量来解决oCPX探测流量边界的问题。

这样,即解决了初始效果的保证,又解决了oCPX的流量边界,不用过于担心pCVR模型探测流量的范围受限,又提供了一个较好的冷启动逻辑和平滑的流量扩展逻辑。

《数据与广告系列二十:oCPX大势下标签定向的发展演化》一文中,我们有提到过,oCPX大势所趋之下,并不是说要直接舍去掉用了“大半辈子”的定向,而是不断的探索更好的一些解决思路。

其中系列第二十所提供的一些思路,例如标签定向的目标与oCPX转化目标保持预估的一致,其次是标签定向尽量扩大范围不影响oCPX的流量边界等等,或者使用父子级标签逻辑,即冷启动一阶段时期采用更为精准的子标签,当进入二阶段之后采用泛精准的父标签。

这些都是思路,而我们在第二十四篇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值