假设检验(Hypothesis Test)
一、双边检验
1.1 U检验: σ 2 \sigma^2 σ2已知,关于 μ \mu μ的检验
假设检验
H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 H0:μ=μ0,H1:μ=μ0
统计量
U = x ˉ − μ 0 σ n ∼ N ( 0 , 1 ) U = \frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) U=nσxˉ−μ0∼N(0,1)
拒绝域
根据定义,对于一个给定的置信区间
α
\alpha
α,我们可以在正态分布两端取到分位点
±
u
α
2
\pm u_\frac{\alpha}{2}
±u2α,既
P
{
∣
U
∣
≥
u
α
2
}
=
α
P\left\{ \left| U \right| \geq u_\frac{\alpha}{2} \right\}= \alpha
P{∣U∣≥u2α}=α
如果统计量的值u,
∣
u
∣
≥
u
α
2
\left| u \right| \geq u_\frac{\alpha}{2}
∣u∣≥u2α,则意味着发生了小概率事件,因此原假设
H
0
H_0
H0为小概率事件,拒绝原假设
故拒绝域为
W
1
=
{
∣
u
∣
≥
u
α
2
}
W_1 = \left \{ \left| u \right| \geq u_\frac{\alpha}{2} \right \}
W1={∣u∣≥u2α}
1.2 T检验: σ 2 \sigma^2 σ2未知,关于 μ \mu μ的检验
假设检验
H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 H0:μ=μ0,H1:μ=μ0
统计量
T = x ˉ − μ 0 S n ∼ t ( n − 1 ) T = \frac{\bar{x}-\mu_0}{\frac{S}{\sqrt{n}}} \sim t(n-1) T=nSxˉ−μ0∼t(n−1)
S 2 S^2 S2为 α 2 \alpha^2 α2的无偏估计
拒绝域
W
1
=
{
∣
t
∣
≥
t
α
2
(
n
−
1
)
}
W_1 = \left \{ \left| t \right| \geq t_\frac{\alpha}{2}(n-1) \right \}
W1={∣t∣≥t2α(n−1)}
t分布和正态分布的曲线类似,所以拒绝域的计算方式也类似,不同的是方差未知我们只能用
S
2
S^2
S2来代替
α
2
\alpha^2
α2
1.3 卡方 χ 2 \chi^2 χ2检验: μ \mu μ未知,关于 σ 2 \sigma^2 σ2的检验
假设检验
H 0 : σ 2 = σ 0 2 , H 1 : σ 2 ≠ σ 0 2 H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2 H0:σ2=σ02,H1:σ2=σ02
统计量
χ 2 = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) χ2=σ2(n−1)S2∼χ2(n−1)
拒绝域
W
1
=
{
χ
2
≤
χ
1
−
α
2
2
(
n
−
1
)
或
者
χ
2
≥
χ
α
2
2
(
n
−
1
)
}
W_1 = \left \{ \chi^2 \leq \chi^2_{1-\frac{\alpha}{2}}(n-1) 或者 \chi^2 \geq \chi^2_\frac{\alpha}{2}(n-1) \right \}
W1={χ2≤χ1−2α2(n−1)或者χ2≥χ2α2(n−1)}
标准卡方分布
χ
2
\chi^2
χ2分布的左右两边不对称,所以将两边分开
二、单边检验
2.1 U单边检验: σ 2 \sigma^2 σ2已知,关于 μ \mu μ的检验
假设检验
H 0 : μ = μ 0 , H 1 : μ > μ 0 ( 或 μ < μ 0 ) H_0: \mu = \mu_0, H_1: \mu > \mu_0 (或 \mu < \mu_0) H0:μ=μ0,H1:μ>μ0(或μ<μ0)
统计量
U = x ˉ − μ 0 σ n ∼ N ( 0 , 1 ) U = \frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) U=nσxˉ−μ0∼N(0,1)
拒绝域
根据定义,对于一个给定的置信区间
α
\alpha
α,我们可以在正态分布取到单个分位点
u
α
u_\alpha
uα,既
P
{
U
>
u
α
}
=
α
(
或
P
{
U
<
−
u
α
}
=
α
)
P\left\{ U > u_\alpha \right\}= \alpha (或P\left\{ U < -u_\alpha \right\}= \alpha )
P{U>uα}=α(或P{U<−uα}=α)
如果统计量的值u,
u
>
u
α
(
或
u
<
−
u
α
)
u > u_\alpha(或u < -u_\alpha)
u>uα(或u<−uα),则意味着发生了小概率事件,因此原假设
H
0
H_0
H0为小概率事件,拒绝原假设
拒绝域为
W
1
=
{
u
>
u
α
}
(
或
W
1
=
{
u
<
−
u
α
}
)
W_1 = \left \{ u > u_\alpha \right \}(或W_1 = \left \{ u < -u_\alpha \right \})
W1={u>uα}(或W1={u<−uα})
2.2 T单边检验: σ 2 \sigma^2 σ2未知,关于 μ \mu μ的检验
假设检验
H 0 : μ = μ 0 , H 1 : μ > μ 0 ( 或 μ < μ 0 ) H_0: \mu = \mu_0, H_1: \mu > \mu_0(或\mu < \mu_0) H0:μ=μ0,H1:μ>μ0(或μ<μ0)
统计量
T
=
x
ˉ
−
μ
0
S
n
∼
t
(
n
−
1
)
T = \frac{\bar{x}-\mu_0}{\frac{S}{\sqrt{n}}} \sim t(n-1)
T=nSxˉ−μ0∼t(n−1)
S
2
S^2
S2为
α
2
\alpha^2
α2的无偏估计
拒绝域
W
1
=
{
t
>
t
α
(
n
−
1
)
}
(
或
W
1
=
{
t
<
−
t
α
(
n
−
1
)
}
)
W_1 = \left \{ t > t_\alpha(n-1) \right \}(或W_1 = \left \{ t < -t_\alpha(n-1) \right \})
W1={t>tα(n−1)}(或W1={t<−tα(n−1)})
t分布和正态分布的曲线类似,所以拒绝域的计算方式也类似,不同的是方差未知我们只能用
S
2
S^2
S2来代替
α
2
\alpha^2
α2
2.3 卡方 χ 2 \chi^2 χ2单边检验: μ \mu μ未知,关于 σ 2 \sigma^2 σ2的检验
假设检验
H 0 : σ 2 = σ 0 2 , H 1 : σ 2 > σ 0 2 ( 或 σ 2 < σ 0 2 ) H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 > \sigma_0^2(或\sigma^2 < \sigma_0^2) H0:σ2=σ02,H1:σ2>σ02(或σ2<σ02)
统计量
χ 2 = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) χ2=σ2(n−1)S2∼χ2(n−1)
拒绝域
W 1 = { χ 2 > χ α 2 ( n − 1 ) } ( 或 W 1 = { χ 2 < χ 1 − α 2 ( n − 1 ) } ) W_1 = \left \{ \chi^2 > \chi^2_\alpha(n-1) \right \} (或W_1 = \left \{ \chi^2 < \chi^2_{1-\alpha}(n-1) \right \}) W1={χ2>χα2(n−1)}(或W1={χ2<χ1−α2(n−1)})
三、两个独立正态分布总体均值与方差的检验
设
X
1
,
X
2
,
X
3
,
.
.
.
X
n
1
X_1,X_2,X_3,...X_{n_1}
X1,X2,X3,...Xn1为总体
N
(
μ
1
,
σ
1
2
)
N(\mu_1, \sigma_1^2)
N(μ1,σ12)的样本,
设
Y
1
,
Y
2
,
Y
3
,
.
.
.
Y
n
2
Y_1,Y_2,Y_3,...Y_{n_2}
Y1,Y2,Y3,...Yn2为总体
N
(
μ
2
,
σ
2
2
)
N(\mu_2, \sigma_2^2)
N(μ2,σ22)的样本
3.1 U检验: σ 1 2 , σ 2 2 \sigma_1^2, \sigma_2^2 σ12,σ22已知,关于 μ 1 , μ 2 \mu_1, \mu_2 μ1,μ2的检验
假设检验
H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 H0:μ1=μ2,H1:μ1=μ2
统计量
U = x ˉ − y ˉ σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) U = \frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1) U=n1σ12+n2σ22xˉ−yˉ∼N(0,1)
拒绝域
虽然统计量的计算方程变了,但拒绝域形式不变
W
1
=
{
∣
u
∣
≥
u
α
2
}
W_1 = \left \{ \left| u \right| \geq u_\frac{\alpha}{2} \right \}
W1={∣u∣≥u2α}
3.2 T检验: σ 1 2 , σ 2 2 \sigma_1^2, \sigma_2^2 σ12,σ22未知,但已知 σ 1 2 = σ 2 2 \sigma_1^2 = \sigma_2^2 σ12=σ22,关于 μ 1 , μ 2 \mu_1, \mu_2 μ1,μ2的检验
假设检验
H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 H0:μ1=μ2,H1:μ1=μ2
统计量
T
=
x
ˉ
−
y
ˉ
S
w
1
n
1
+
1
n
2
∼
t
(
n
1
+
n
2
−
2
)
其
中
S
w
=
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
n
1
+
n
2
−
2
T = \frac{\bar{x}-\bar{y}}{S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1+n_2-2) 其中 S_w = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}
T=Swn11+n21xˉ−yˉ∼t(n1+n2−2)其中Sw=n1+n2−2(n1−1)S12+(n2−1)S22
S
2
S^2
S2为
α
2
\alpha^2
α2的无偏估计
拒绝域
W 1 = { ∣ t ∣ ≥ t α 2 ( n 1 + n 2 − 2 ) } W_1 = \left \{ \left| t \right| \geq t_\frac{\alpha}{2}(n_1+n_2-2) \right \} W1={∣t∣≥t2α(n1+n2−2)}
3.3 T检验: σ 1 2 , σ 2 2 \sigma_1^2, \sigma_2^2 σ12,σ22未知,但已知 σ 1 2 ≠ σ 2 2 \sigma_1^2 \neq \sigma_2^2 σ12=σ22,关于 μ 1 , μ 2 \mu_1, \mu_2 μ1,μ2的检验
假设检验
H 0 : μ 1 = μ 2 , H 1 : μ 1 ≠ μ 2 H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 H0:μ1=μ2,H1:μ1=μ2
统计量
T
=
x
ˉ
−
y
ˉ
S
1
n
1
+
S
2
n
2
∼
t
(
f
)
其
中
f
=
(
S
1
2
n
1
+
S
2
2
n
2
)
2
(
S
1
2
/
n
1
)
2
n
1
−
1
+
(
S
2
2
/
n
2
)
2
n
2
−
1
T = \frac{\bar{x}-\bar{y}}{\sqrt{\frac{S_1}{n_1} + \frac{S_2}{n_2}}} \sim t(f) 其中 f = \frac{(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2})^2}{\frac{(S_1^2/n_1)^2}{n_1-1} + \frac{(S_2^2/n_2)^2}{n_2-1}}
T=n1S1+n2S2xˉ−yˉ∼t(f)其中f=n1−1(S12/n1)2+n2−1(S22/n2)2(n1S12+n2S22)2
S
2
S^2
S2为
α
2
\alpha^2
α2的无偏估计
拒绝域
W 1 = { ∣ t ∣ ≥ t α 2 ( n 1 + n 2 − 2 ) } W_1 = \left \{ \left| t \right| \geq t_\frac{\alpha}{2}(n_1+n_2-2) \right \} W1={∣t∣≥t2α(n1+n2−2)}
3.4 F检验(方差齐性检验): σ 1 2 , σ 2 2 , μ 1 , μ 2 \sigma_1^2, \sigma_2^2, \mu_1, \mu_2 σ12,σ22,μ1,μ2未知,关于 σ 1 2 , σ 2 2 \sigma_1^2, \sigma_2^2 σ12,σ22的检验
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用秩和检验等方法
假设检验
H 0 : σ 1 2 = σ 2 2 , H 1 : σ 1 2 ≠ σ 2 2 H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2 H0:σ12=σ22,H1:σ12=σ22
统计量
F = S 1 2 S 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F = \frac{S_1^2}{S_2^2} \sim F(n_1-1, n_2-1) F=S22S12∼F(n1−1,n2−1)
拒绝域
W 1 = { f ≥ F α 2 ( n 1 − 1 , n 2 − 1 ) 或 者 f ≤ F 1 − α 2 ( n 1 − 1 , n 2 − 1 ) } W_1 = \left \{ f \geq F_\frac{\alpha}{2}(n_1-1, n_2-1) 或者 f \leq F_{1-\frac{\alpha}{2}}(n_1-1, n_2-1) \right \} W1={f≥F2α(n1−1,n2−1)或者f≤F1−2α(n1−1,n2−1)}
四、非参检验
秩和检验
T-检验:平均值的成对二样本检验
学必求其心得,业必贵其专精