python 实现了一个多模态数据(力、振动、声发射)融合的深度学习模型,用于刀具磨损预测。代码涵盖了数据读取、预处理、模型构建、训练、评估和可视化等完整的机器学习流程,通过对比带有注意力机制和不带注意力机制的模型,深入分析模型性能和数据特征关系,为刀具磨损预测任务提供了全面的解决方案。
import pandas as pd
import numpy as np
import os
import tensorflow as tf
from tensorflow.keras import Model
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.backend import int_shape
from keras import backend as K
from keras.layers import GlobalAveragePooling2D, Dense,