NOIP2003提高组 加分二叉树

题目描述

设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:
subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数
若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;
(1)tree的最高加分
(2)tree的前序遍历

题解

DP。
我们设 Fi,j 为i到j的最高分数, Gi,j 为i到j的最高分数时, ij 的根节点。
那么我们将i~j分成两段(分开的地方枚举一下),由分开的两段更新i~j。
所以,DP方程为

Fi,j=max(f[i][k1]f[k+1][j]+a[k])(ikj)

对于求前序遍历,我们只要从 G1,n 开始向两边用递归搜就行了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define N 40
#define LL long long
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
LL f[N][N],a[N],i,j,k,n,g[N][N];
void qxbl(LL l,LL r)
{
    if (l>r) return;
    printf("%lld ",g[l][r]);
    qxbl(l,g[l][r]-1);
    qxbl(g[l][r]+1,r);
}
int main()
{
    scanf("%lld",&n);
    fo(i,1,n)
    {
        scanf("%lld",&a[i]);
        f[i][i]=a[i];
        g[i][i]=i;
    }
    fd(i,n,1)
        fo(j,i+1,n)
            fo(k,i,j)
            {
                if (!f[i][k-1]) f[i][k-1]=1;
                if (!f[k+1][j]) f[k+1][j]=1;
                if (f[i][k-1]*f[k+1][j]+a[k]>f[i][j])
                {
                    f[i][j]=f[i][k-1]*f[k+1][j]+a[k];
                    g[i][j]=k;
                }
            }
    printf("%lld\n",f[1][n]);
    qxbl(1,n);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值