sicily 2501. 算算式

2501. 算算式

Constraints

Time Limit: 1 secs, Memory Limit: 256 MB

Description

_gXX遇到一个麻烦的式子:
S = n 1 + n 2 + n 3 + ...... + n k,已知n、k,求S的值。
因为_gXX数学很差,希望你能告诉他答案。但是由于他的数学实在太差了,所以你只需要告诉他S除以9901的余数即可。

Input

两个整数,n和k(n ≤ 1000 , k ≤ 10 9)。

Output

一个数,表示S除以9901的余数。

Sample Input

2 3

Sample Output

14

题目分析

数论题
第一是同余定理
a+b≡x+m (mod d),其中 a≡x (mod d),b≡m(mod d)
即(x+m)%d = (x%d + m%d) %d
a-b≡x-m (mod d) 其中 a≡x (mod d),b≡m (mod d)
a*b≡x*m (mod d ) 其中a≡x (mod d),b≡m (mod d)
第二是应用了费马小定理
百科解释为:假如p是质数,且(a,p)=1,那么 a(p-1)≡1(mod p)。
即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
应用到这一题就是p=9901为质数
则n^(9900+k) % 9901 = (n^9900%9901 * n^k)%9901 = (1 * n^k) % 9901 = n^k % 9901;
即每9900个数为一个循环
第三应用等比公式的求和
n^1 + n^2 +...+ n^9900 = n*(1-n^9900)/(1-n)
左右对9901求模,右边应用同余定理,注意到1-n^9900对9901求模为0
所以最终结果为0
即此题
(n^1 + n^2 +...+ n^k) % 9901 = (n^1 + n^2 +...+ n^(k%9900)) % 9901
第四为了加快计算,
n^1 + n^2 +..+ n^k = n(1+(n..n(1+n)..))再用同余公式


#include <stdio.h>
const int p = 9901;

int main()
{
  int n,k;
  scanf("%d%d",&n,&k);

  int temp = 0;
  int times = k % 9900;
  for (int c = 1; c <= times; ++c)
    temp = n * (1 + temp) % p;

  printf("%d\n", temp);
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值