上它的地址:http://v.163.com/special/opencourse/machinelearning.html
第一课:
监督学习:
比如一组癌症数据,拿到数据的时候我就知道它是正常的基因还是癌症基因,然后分类的时候我能正确的,我能将一个数据映射到其中,并且根据其在哪个分类中作出判断此基因是正常的or癌症的---
我目前做的实验大多数是这个,下载的数据都加上了标签!
无监督学习:
视频中的例子cocktail,让我想起了NBA现在的现场声音扑捉也是如此的
无监督学习主要的过程还是聚类。但是我们能够将数据聚成几类,但是却无法知道这一类是什么,那一类又是什么,将两个混合的声音分开是一个很常见的用处。
这个代码对matlab只需要一行代码,如果运用到R上面那么多了许多工作!!R还是未兴起啊
加强学习:
这就像杂戏团训练小熊一样,对的时候叫:good bear,并对其奖励食物;做错的时候说:bad bear,并对其惩罚。那么久而久之熊会尝试着做good bear。
视频中展现的例子:机器狗爬过障碍物(实现的过程肯定失败多次后,慢慢学会躲避障碍物的路线)
--------------------------
第二课:监督学习,梯度下降
形象的说明为:寻找最快的下山路径
由于训练的数据集可能是巨大的,所以可以使用随机梯度下降法
--------------------------