数据挖掘-斯坦福大学公开课-笔记

上它的地址:http://v.163.com/special/opencourse/machinelearning.html

第一课:

监督学习:

比如一组癌症数据,拿到数据的时候我就知道它是正常的基因还是癌症基因,然后分类的时候我能正确的,我能将一个数据映射到其中,并且根据其在哪个分类中作出判断此基因是正常的or癌症的---

我目前做的实验大多数是这个,下载的数据都加上了标签!

无监督学习:

视频中的例子cocktail,让我想起了NBA现在的现场声音扑捉也是如此的

无监督学习主要的过程还是聚类。但是我们能够将数据聚成几类,但是却无法知道这一类是什么,那一类又是什么,将两个混合的声音分开是一个很常见的用处。

这个代码对matlab只需要一行代码,如果运用到R上面那么多了许多工作!!R还是未兴起啊

加强学习:

这就像杂戏团训练小熊一样,对的时候叫:good bear,并对其奖励食物;做错的时候说:bad bear,并对其惩罚。那么久而久之熊会尝试着做good bear。

视频中展现的例子:机器狗爬过障碍物(实现的过程肯定失败多次后,慢慢学会躲避障碍物的路线)

 2013-08-18 观后感

--------------------------

第二课:监督学习,梯度下降

梯度下降法(gradient descent) [1] ,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小。梯度下降法是2范数下的最速下降法。
最速下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a称为学习速率,可以是较小的常数。 g(k)是f(x)在x(k)的梯度。 直观的说,就是在一个有中心的等值线中,从初始值开始,每次沿着垂直等值线方向移动一个小的距离,最终收敛在f(x)的极值处。

形象的说明为:寻找最快的下山路径

由于训练的数据集可能是巨大的,所以可以使用随机梯度下降法

 2013-08-19 观后感

--------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

huangleijay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值