函数的连续性判断,连续性与可导的关系,已经函数在定义域区间内对分段函数进行求解,判断函数在某点的连续性,其中间断点分为可去间断点,跳跃间断点(第一类间断点)考察点比较多,对应震荡间断点,无穷间断点(第二类间断点)基本没有什么考察,所以根据实际考察情况进行重点掌握。
函数连续性





闭区间上连续函数的性质

定理1(有界性与最大值最小值定理):闭区间上的连续函数在该区间上有界且一定有最大值和最小值。
定理2(零点定理):设函数 f(x) 在闭区间 [a,b] 上连续,且 f(a) 与 f(b) 异号(即 f(a)⋅f(b)<0 ),那么在开区间 (a,b) 内至少有一点 ξ ,使 f(ξ)=0 。
定理3(介值定理):设函数 f(x) 在闭区间 [a,b] 上连续,且在这个区间的端点取不同的函数值 {f(a)=A f(b)=B ,那么对于 A 与 B 之间的任意一个数 C ,在开区间 (a,b) 内至少有一点 ξ ,使得 f(ξ)=C(a<ξ<b) 。(简言之,闭区间上的连续函数,至少取得介于端点函数值之间的一切值一次。)

间断点



关于函数在某点连续的问题,我们听到最多的,就是极限值等于函数值。这也是几乎所有的辅导书籍都会讲的内容,但实际上,除此以外,还有一种不常见的方式,即通过函数值增量趋于0来证明函数连续。看下面这道题:



故得出函数在任意点x0处连续
;
本题使用的方法,即当自变量的增量趋于0时,函数值增量也趋于0,则函数连续。这种方法不常见,但还是要了解这种方法。