黑白棋(aphabeta剪枝算法的应用)带界面

本文介绍了作者在人工智能课程中学习并应用AlphaBeta剪枝算法实现黑白棋程序的过程。程序简化为6*6棋盘,采用max-min-max-min搜索策略。除了介绍算法,还分享了棋盘翻转函数和alpha-beta剪枝的核心实现,并提到了其他可能的算法如决策树和BP神经网络。提供了一个外部文档链接以深入理解alpha-beta剪枝的优化技术。
摘要由CSDN通过智能技术生成

人工智能课上学了一些搜索算法以及最近学了对弈学在棋类中的应用,认识到了alpha-beta剪枝算法,实现一个简单的黑白棋的程序。源码
链接:http://pan.baidu.com/s/1i5K41z3 密码:6i5z
这里写图片描述
黑白棋:
又叫翻转棋(Reversi)、奥赛罗棋(Othello)、苹果棋或反棋(Anti reversi)。黑白棋在西方和日本很流行。游戏通过相互翻转对方的棋子,最后以棋盘上谁的棋子多来判断胜负。它的游戏规则简单,因此上手很容易,但是它的变化又非常复杂。
黑白棋百度百科
黑白棋维基百科
我的黑白棋为了简单改成6*6的,关于6*6的黑白棋网上有个在线可以用我的黑白棋玩一玩由于考虑到运行时间,所以就max->min->max->min往下搜四层,当然想要搜索层数更多更智能咯
对于应用在黑白棋的算法其实还有许多,比如决策树,BP神经网之类的算法,好多。
然后关于我用到的alpha-beta剪枝算法,不是很熟悉的可以看下别人写的这个文档,里面的伪代码写的很好,而且还讲到了优化方法,比如置换表,历史表,以及学习算法的应用。链接:http://pan.baidu.com/s/1kVCsNGF 密码:kn5x
附两个重要的函数:
(1)棋翻转函数:


void CBlackWhiteDlg::TransChess(int ChessType, int y, int x)
{
    if (y<0 || x<0)return;
    int k, m, l, n;//计数器
    if (ChessType == WhiteChess)
    {
        for (k = x + 1; k < 6; k++)//水平向右方向
        {
            if (ChessBoard[y][k] == NoChess)
                break;
            if (ChessBoard[y][k] == WhiteChess)
            {
                for (l = x + 1; l < k; l++)
                {

                    SubChess(BlackChess, y, l, BlackPosition);
                    DrawChess(WhiteChess, y, l);
                }
                break;
            }

        }
        for (k = x - 1; k >= 0; k--)//水平向左方向
        {
            if (ChessBoard[y][k] == NoChess)
                break;
            if (ChessBoard[y][k] == WhiteChess)
            {
                for (l = k + 1; l < x; l++)
                {

                    SubChess(BlackChess, y, l, BlackPosition);
                    DrawChess(WhiteChess, y, l);
                }
                break;
            }

        }
        for (k = y + 1; k < 6; k++)//垂直向下方向
        {
            if (ChessBoard[k][x] == NoChess)
                break;
            if (ChessBoard[k][x] == WhiteChess)
            {
                for (l = y + 1; l < k; l++)
                {

                    SubChess(BlackChess, l, x, BlackPosition);
                    DrawChess(WhiteChess, l, x);
                }
                break;
            }

        }
        for (k = y - 1; k >= 
Alpha-Beta剪枝(Alpha-Beta pruning) 对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。各种各样的这种算法用于所有的强力Othello程序。(同样用于其他棋类游戏,如国际象棋和跳棋)。为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。 •估值 这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。我将要叙述三种不同的估值函数范例。我相信,大多数的Othello程序都可以归结于此。 棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。例如,角在开局阶段和中局开始阶段比终局阶段更重要。采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。 基于行动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。观察表明,许多人类玩者努力获得最大的行动力(可下棋的数目)和潜在行动力(临近对手棋子的空格,见技巧篇)。如果代码有效率的话,可以很快发现,它们提高棋力很多。 基于模版的估值 :正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大行动力和潜在行动力是全局特性,但是他们可以被切割成局部配置,再加在一起。棋子最少化也是如此。这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。 估值合并:一般程序的估值基于许多的参数,如行动力、潜在行动力、余裕手、边角判断、稳定子。但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值