郁闷的C小加(二)
时间限制:1000 ms | 内存限制:65535 KB
难度:4
描述
聪明的你帮助C小加解决了中缀表达式到后缀表达式的转换(详情请参考“郁闷的C小加(一)”),
C小加很高兴。但C小加是个爱思考的人,他又想通过这种方法计算一个表达式的值。即先把表达式转换为后缀表达式,
再求值。这时又要考虑操作数是小数和多位数的情况。
输入
第一行输入一个整数T,共有T组测试数据(T<10)。
每组测试数据只有一行,是一个长度不超过1000的字符串,表示这个运算式,每个运算式都是以“=”结束。
这个表达式里只包含+-* /与小括号这几种符号。其中小括号可以嵌套使用。
数据保证输入的操作数中不会出现负数并且小于1000000。
数据保证除数不会为0。
输出
对于每组测试数据输出结果包括两行,先输出转换后的后缀表达式,再输出计算结果,结果保留两位小数。
两组测试数据之间用一个空行隔开。
样例输入
2
1+2=
(19+21)*3-4/5=
样例输出
12+=
3.00
1921+3*45/-=
119.20
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stack>
using namespace std;
stack<char>sta;
stack<double>dou;
char s[1005];
char x[1005];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int i,k=0;
scanf("%s",&s[1]);
int len = strlen(&s[1]);
s[0]='(';
s[len]=')';
for(i=0;i<=len;i++)
{
if(s[i]=='(')
{
sta.push(s[i]);
}
else if(s[i]==')')
{
while(sta.top()!='(')
{
double a1,a2,a3;
a1 = dou.top();
dou.pop();
a2 = dou.top();
dou.pop();
switch(sta.top())
{
case '+':a3 = a2 + a1; break;
case '-':a3 = a2 - a1; break;
case '*':a3 = a2 * a1; break;
case '/':a3 = a2 / a1; break;
}
dou.push(a3);
printf("%c",sta.top());
sta.pop();
}
sta.pop();
}
else if(s[i]=='+' || s[i]=='-')
{
while(sta.top()!='(')
{
double a1,a2,a3;
a1 = dou.top();
dou.pop();
a2 = dou.top();
dou.pop();
switch(sta.top())
{
case '+':a3 = a2 + a1; break;
case '-':a3 = a2 - a1; break;
case '*':a3 = a2 * a1; break;
case '/':a3 = a2 / a1; break;
}
dou.push(a3);
printf("%c",sta.top());
sta.pop();
}
sta.push(s[i]);
}
else if(s[i]=='*' || s[i]=='/')
{
if(sta.top()=='*')
{
double a1,a2;
a1 = dou.top();
dou.pop();
a2 = dou.top();
dou.pop();
dou.push(a1*a2);
printf("%c",sta.top());
sta.pop();
}
else if(sta.top()=='/')
{
double a1,a2;
a1 = dou.top();
dou.pop();
a2 = dou.top();
dou.pop();
dou.push(a2/a1);
printf("%c",sta.top());
sta.pop();
}
sta.push(s[i]);
}
else if(s[i]>='0' && s[i]<='9')
{
double d = 0;
int b = i;
int f = 0;
while(s[i]>='0' && s[i]<='9' || s[i]=='.')
{
printf("%c",s[i]);
if(s[i]=='.')
{
f = 1;
b = i;
}
else
{
d = d * 10 + (s[i]-'0');
}
i++;
}
i--;
if(f)
{
dou.push(d/pow(10,i-b));
}
else
{
dou.push(d);
}
}
}
printf("=\n");
printf("%.2lf\n\n",dou.top());
}
return 0;
}