- 博客(928)
- 资源 (44)
- 收藏
- 关注
原创 3.8 JSON Schema 术语回顾
本文介绍了JSON Schema相关术语体系,包括15个核心概念。其中,dialect指不同版本的标准变体,draft是规范的开发版本,JSON是被校验的目标数据格式。Schema本身是描述JSON规则的集合,通过关键字(如type、required)定义校验逻辑。实现指具体的校验工具,实例是待校验的数据。其他重要概念包括元Schema(校验Schema的Schema)、子Schema(嵌套规则)、校验结果、词汇表(功能相关的关键字集合)以及辅助开发的工具链。这些术语共同构成了JSON Schema的技术规
2025-10-19 14:38:56
103
原创 3.7 第一个JSON Schema(二)
本文介绍了JSON Schema中属性的定义方法。通过properties关键字可以定义JSON对象中的各个属性,每个属性可设置类型、描述等元数据。required数组用于指定必填属性,未列入的则为可选属性。示例展示了如何定义产品ID(整数)、产品名称(字符串)、价格(大于0的数字)等必填属性,以及标签(唯一字符串数组)等可选属性。通过type、exclusiveMinimum、minItems、uniqueItems等验证关键字,可以精确控制各属性的格式要求,确保JSON数据的有效性。
2025-10-18 07:24:48
178
原创 3.6 第一个JSON Schema(一)
本文介绍了JSON Schema的基本概念和使用方法。JSON Schema是一种用于描述和验证JSON数据结构的模板规范,通过定义约束条件确保数据有效性。文章以产品目录为例,展示了如何创建基础Schema定义,重点讲解了$schema、$id、title、description和type等关键字的用途。其中$id用于为模式建立唯一标识符,支持内部和外部引用。内部引用示例演示了如何通过$ref引用子模式,外部引用则展示了跨文件引用其他Schema的方法。这些功能使JSON Schema成为验证JSON文档结
2025-10-17 22:53:27
213
原创 3.5 JSON Schema回顾
本文介绍了JSON数据结构及其Schema规范。JSON包含对象、数组、数字、字符串等基本数据类型,与Python类型存在对应关系。JSON Schema作为JSON的"建筑图纸",通过预定义结构、类型和格式,确保数据合法性。文章展示了个人信息的数据示例,并对比了普通字符串与JSON格式的差异,说明JSON可简化数据解析。最后通过具体的Schema示例,演示了如何定义数据结构并进行数据校验,强调Schema作为约定协议的重要性,使数据处理更加规范可靠。
2025-10-14 23:03:05
116
原创 3.4 JSON Mode与JSON Schema
本文介绍了OpenAI在GPT-4中引入的JSONMode功能,该功能强制模型输出符合JSON格式的响应,显著提升了与外部系统的数据交互效率。通过结合JSONSchema定义数据结构约束,错误率可降至0.15%以下。文章详细解析了JSONSchema的作用机制,包括数据校验、文档化和跨系统一致性保证,并提供了Python中使用jsonschema库进行数据校验的代码示例。JSONMode实现了从自然语言到结构化数据的可靠转换,是大模型应用于企业系统集成的关键技术。
2025-10-12 19:54:45
151
原创 3.3 Function Calling编码实战
摘要: 文章介绍了Function Calling的概念及其在大模型中的应用。Function Calling作为AI Agent与外部工具交互的协议,使模型能够主动调用API、数据库等外部能力,突破静态文本生成的限制。通过两个代码示例展示了天气查询功能的实现:第一个示例因模型理解不足导致输出乱码;第二个示例优化提示词并规范输出格式后,成功调用函数并返回结构化天气信息(如上海天气:18-25°C,晴朗,微风)。示例突出了标准化指令和解析对函数调用的重要性。
2025-10-10 23:35:39
265
原创 2.8 提示词调优编码实战(三)
本文探讨了轻量级模型Llama3.2 1B的局限性及优化方法。该模型因参数规模小(仅10亿),在理解复杂提示词和格式约束方面存在不足,往往会优先满足问题理解而忽略格式要求。文章介绍了Llama模型中system、user、assistant等角色的结构化设计,通过特殊标记区分角色内容,并提供了标准格式示例。最后通过一个Python代码示例,展示了如何利用角色标记构建提示词模板,实现运营商流量套餐的智能识别功能。测试结果表明,该方法能有效指导小模型完成特定格式的输出任务。
2025-10-10 20:00:55
95
原创 [实践篇]13.34 GPU内存频繁映射导致的procnto_smp_instr进程cpu过载
本文探讨了内存管理优化方案。首先分析共享内存机制在跨系统通信中的应用,指出非连续内存会因频繁映射导致SMMU负载升高。通过tracelogger可定位到具体的内存映射瓶颈。文章提出减少内存碎片化的五项措施:1)开机时申请大页内存;2)避免频繁申请释放;3)使用ION/DMA标志申请连续内存;4)采用PMEM确保物理连续;5)减少纹理销毁重建以降低映射频率。这些方法能有效降低SMMU服务负载,提升系统性能。
2025-09-14 14:23:14
326
原创 [实践篇]13.33 错配ContextBank,播放密流触发Full Ramdump
SMMU(系统内存管理单元)是外设访问内存的硬件控制组件,负责地址转换。它支持单级(VA→PA)和双级(VA→IPA→PA)转换,后者用于虚拟机场景。每个SMMU包含多个CB(上下文组),通过SID关联外设,定义其可访问的内存区域。配置文件中需正确定义CB和SID,否则会导致SMMU故障。
2025-09-14 13:10:20
128
原创 2.7 提示词调优编码实战(二)
本文介绍了如何优化提示词模板来提升大模型输出质量。通过格式化任务描述和输出约束,使模型能更准确地识别用户对流量套餐的需求。示例代码展示了使用Ollama API调用llama3.2模型的实现,包括服务检查、文本生成和流式输出功能。优化后的模板明确定义了JSON输出的字段类型、取值范围和排序规则,要求模型只输出用户提及的字段。虽然基础模型输出仍有改进空间,但通过微调等技术可进一步提升小模型能力。
2025-08-24 21:58:07
147
原创 2.6 提示词调优编码实战(一)
本文通过开发运营商"流量套餐智慧客服"系统,演示了提示词调优的重要性。首先使用简单提示词时,模型仅输出无关的通用套餐信息。随后通过构建提示词模板,包含任务描述、用户输入和输出格式要求,使模型能够识别用户对流量、价格等属性的需求,并以JSON格式输出。实验表明,恰当的提示词设计能显著提升模型输出的准确性和实用性,但当前结果仍不能满足实际客服需求,需要进一步优化提示词工程。
2025-08-24 20:36:46
339
原创 1.11 本地模型调用编码实战(二)
本文介绍了使用Python的requests库访问Ollama服务的相关技术要点。主要内容包括:1)通过requests发送GET请求检查模型可用性;2)关键参数说明:prompt提示词、temperature控制生成随机性、max_tokens限制输出长度;3)流式与非流式输出的区别及实现方式;4)多轮对话的实现方法,通过messages数组维护对话历史实现上下文连贯。文章详细解析了各参数对模型输出的影响,并提供了具体的代码示例,为使用Ollama服务进行文本生成和多轮对话开发提供了实用指导。
2025-08-24 10:24:29
235
原创 1.10 本地模型调用编码实战(一)
本文介绍了一个基于Python的本地Llama3.2模型交互工具包,通过Ollama框架实现模型调用。主要内容包括:1) 开发环境配置(MacBook M1/8GB内存);2) 核心功能实现:服务状态检查、文本生成(支持流式输出)和多轮对话;3) 完整代码示例及三种交互方式演示。该工具包可作为智能体开发的基础框架,实现了从服务连接到功能调用的全流程,支持参数调节和对话历史记录功能。
2025-08-23 11:10:08
103
原创 1.9 Ollama加载模型原理
Ollama简化了本地大语言模型的部署流程,采用客户端-服务器架构自动完成模型加载与交互。其工作流程包括:1)解析指令并检查本地缓存,必要时从远程仓库下载模型;2)解析Modelfile获取模型配置和量化信息;3)根据硬件选择最优推理后端;4)启动后台服务并暴露API端口。通过将模型权重转化为可调用的服务,Ollama实现了命令行直接对话的功能,降低了LLM使用门槛。
2025-08-21 18:52:01
323
原创 3.2 结构化输出简介
本文探讨了大模型连接外部世界的核心技术——结构化输出,剖析其从插件系统到行业标准的发展历程。文章以OpenAI产品演进为主线,依次分析Plugins的封闭生态局限、Function Calling的标准化突破、JSON Mode的格式强制能力,以及Structured Outputs对复杂业务场景的支持。最终指出行业正从单模型规范转向跨平台协议(如MCP),使结构化输出成为大模型与外部系统交互的通用语言。全文揭示结构化输出如何解决自然语言与机器指令的"翻译"难题,成为大模型突破信息茧房、
2025-08-18 22:42:53
247
原创 3.1 结构化输出(大模型的封闭与开放)
摘要:本文探讨大模型突破静态知识库局限的方法,通过连接外部世界实现智能化升级。系统介绍了6种连接方式:1)API接口实现实时数据交互;2)数据库直连获取结构化知识;3)工具调用扩展功能边界;4)网页爬虫采集公开信息;5)物联网硬件实现物理世界感知;6)人工反馈优化系统表现。这些技术使大模型具备实时信息获取、专业任务执行、私有知识整合等能力,从理论型AI转变为具备实际应用价值的行动型AI。文章揭示了AI技术向开放化、专业化、实用化发展的新趋势。
2025-08-18 20:57:42
477
原创 2.5 提示词安全
摘要:文章介绍了"奶奶漏洞"这一针对ChatGPT的提示词攻击手段,通过情感操纵(如让AI扮演奶奶念Windows序列号)突破AI安全限制。分析了四种提示词攻击类型:角色扮演、分步诱导、情感操纵和编码混淆,以及三种防御措施:注入防御、输出防御和有害提示识别模型。文章揭示了大型语言模型面临的安全风险,以及如何通过技术手段防范恶意提示词攻击,为AI安全防护提供了实用参考。(149字)
2025-07-06 22:19:30
835
原创 2.4 提示词优化
我们在使用大模型的时候,同一任务使用不同表述的提示词,可能得到差异巨大的结果,因为模型的性能高度依赖输入提示词的质量。我们可以通过提示词优化来更高效地获取理想输出。
2025-07-06 21:39:17
844
原创 1.18 LA Kernel日志调试
本文介绍了Linux内核日志级别的分类与配置方法。内核日志分为8个等级(0-7),从EMERG到DEBUG。通过/proc/sys/kernel/printk可查看当前配置的4个日志级别参数。文章详细说明了如何通过dmesg命令、启动参数和运行时修改来调整日志级别,并特别针对QNX和Android系统给出了具体的日志配置方案,包括修改配置文件、adb命令和编译时参数设置等方法。这些技术对于系统调试和日志管理具有实用参考价值。
2025-05-25 14:26:25
224
原创 2.3 提示词工程(三)
本文探讨了如何通过使用外部工具和系统化测试来优化模型性能。首先,介绍了利用基于嵌入的搜索技术实现高效知识检索的方法,通过将相关信息动态添加到模型输入中,提升回应的准确性和时效性。其次,讨论了通过代码执行进行精确计算或调用外部API,以解决语言模型在复杂计算中的局限性。此外,还介绍了如何使模型能够访问特定功能,通过生成符合描述的函数参数并执行函数调用。在系统化测试方面,强调了设计全方位评估程序的重要性,以确保更改对总体性能产生积极影响,并提出了以标准答案为基准评估模型输出的方法。
2025-05-20 11:21:42
1091
原创 2.2 提示词工程(二)
就像学生在考试中借助笔记能够帮助其取得更好的成绩一样,为这类模型提供参考文本也可减少其制造虚假信息的情况。如果输入信息中已经包含了相关知识,就可以直接要求模型在回答问题时引用所提供的文件中的段落。值得注意的是,输出中的引用可以通过在所提供的文件中匹配字符串来进行验证。由于所有模型都受到上下文窗口大小的限制,我们需要一种方法来动态地查询与提出的问题相关的信息。如果我们能向模型提供与提问内容相关的可靠信息,我们就可以指导模型利用这些信息来构建答案。(嵌入式技术)来实现有效的知识检索。
2025-05-20 11:21:27
882
原创 2.1 提示词工程(一)
随着大语言模型(LLM)和多模态模型的普及,AI已从简单的分类和预测工具发展为能够生成复杂内容的强大工具。然而,这些模型的“黑箱”特性使得其内部机制难以精确控制,因此需要通过提示词工程来引导模型输出符合需求的结果。提示词工程(Prompt Engineering)是生成式AI模型中的关键技术,通过优化输入提示,引导模型生成更准确和相关的输出。这一技术不仅提升了AI产品的竞争力,还催生了“提示词工程师”这一新兴职业,成为企业优化AI交互体验的重要手段。
2025-05-11 14:57:10
1052
原创 1.3 AI常见术语梳理
神经网络是一种受生物神经元启发的计算模型,由互连的节点(神经元)组成,通过调整连接权重学习数据中的复杂模式。其核心思想是分层抽象:底层处理原始数据(如像素),高层提取高级特征(如物体轮廓)。批量大小(Batch Size):单次训练样本数(影响内存与稳定性)。可以用减少幻觉,提升事实准确性。精确率(Precision)与召回率(Recall)的调和平均。隐藏层:通过权重矩阵计算特征(如全连接层、卷积层)。将用户流量随机分为A组(旧模型)和B组(新模型)。输出层:生成预测结果(如分类概率、生成文本)。
2025-04-20 14:49:26
771
原创 1.2 大模型技术架构
模型名称架构类型参数量级核心创新点文心一言(ERNIE)编码器-解码器混合架构千亿级知识增强、多模态统一建模通义千问(Qwen)纯解码器Transformer720B长上下文支持、多模态扩展混元(Hunyuan)混合专家(MoE)万亿级稀疏激活、多任务联合训练云雀(Lark)纯解码器优化架构未公开轻量化部署、端云协同混合专家+稀疏注意力16B~146B高效推理、数学与代码优化。
2025-04-20 14:15:27
1015
原创 1.1 初识AI
AI已不再是可选项,而是必备基本技能。它是每个从项目,到产品,到研发再到测试质量交付,甚至各行各业的各个环节的基本技能。AI技术正在深刻重塑行业格局和每一个工程师,每一个人的工作模式。作为一个从业操作系统超过10年的工程师来说,无论产品形态是手机,IOT,汽车,AI已无处不在。行业领域 AI影响维度 典型案例软件工程 ★★★★★★★★★☆ (9/10) GitHub Copilot、AutoML、AI自动化测试。
2025-04-13 16:51:57
801
原创 【系统稳定性】1.13 解析gcore
gcore是什么?高通骁龙8295 (QCOM 8295) 芯片在QNX操作系统下产生的gcore文件,是程序崩溃时系统生成的内存转储文件,包含了程序崩溃时的内存状态、寄存器信息、调用栈等重要信息。gcore文件通常位于/var/log目录下。
2025-03-23 14:39:51
311
原创 【系统稳定性】1.16 GPU(二)
QCOM Adreno GPU 通过硬件和软件的结合,为这些 API 提供底层支持,从而实现高效的图形渲染和计算任务。简单来说,开发者可以通过这些API,在QCOM GPU上实现图形相关的开发。以OpenGL ES为例,开发者可以通过OpenGL ES来利用Adreno GPU 提供了专用的硬件单元(如顶点着色器、片段着色器、纹理单元)来执行相关的的渲染任务。高通的 GPU 驱动程序实现了 OpenGL ES 的 API 接口,将 OpenGL ES 的调用映射到 Adreno GPU 的硬件指令。
2025-03-23 14:00:22
296
原创 1.8【模型部署】Windows本地部署DeepSeek模型 --- Ollama篇(下)
大型语言模型(如 LLaMA、GPT 等)通常包含数十亿甚至数百亿个参数,导致模型文件非常大。为了便于管理和传输,模型文件会被分割成多个较小的分片。每个分片文件包含模型的一部分参数或权重,加载时需要将所有分片合并才能完整地加载模型。无网络连接,直接通过Ollama本地已经本地已经下载好的的Deepseek模型。
2025-03-09 22:51:01
1428
原创 1.7【模型部署】 Windows本地部署DeepSeek模型 --- Ollama篇(上)
Ollama 是一个本地部署大模型的开源项目,旨在简化大型语言模型(LLMs)的本地部署和使用。它提供了一个简单易用的框架,让用户能够在自己的设备上运行和微调各种语言模型,而无需依赖云服务或复杂的配置。Ollama 的目标是让开发者、研究人员和爱好者能够更轻松地探索和应用大型语言模型。
2025-03-09 19:10:35
1134
原创 【系统稳定性】1.15 GPU(一)
Vertex(顶点),Texture(纹理),ALU(算数逻辑运算)分别代表了GPU处理图形数据的不同阶段和功能模块。在3D图形渲染中,顶点是构成3D模型的基本单元。顶点是图形学中的一个基本概念,指的是3D空间中的一个点,通常用坐标(x, y, z)表示。GPU中包含大量的ALU,能够同时处理多个数据(如顶点、像素),实现高性能并行计算。运行在GPU上的程序,负责计算每个像素的最终颜色,通常会结合纹理数据和光照信息。每个ALU可以执行基本的算术操作(如加、减、乘、除)和逻辑操作(如与、或、非)。
2025-03-09 14:08:46
281
原创 【系统稳定性】1.17 SSR
Subsystem Restart即子系统重启,这是一种回复策略或子系统兜底机制,旨在确保系统在某个子系统出现故障时能够自动恢复,而无需重启整个设备。SSR通过监控子系统的健康状态,并在检测到故障时触发重启,以恢复其功能。
2025-03-09 13:48:01
455
原创 【显示】3.1 Android 从Activity到Display链路概括
Activity→→ 创建视图树(View Hierarchy)。Window→ 管理DecorView和Surface。→ 触发MeasureLayoutDraw流程。Surface→ 作为绘图表面,接收Canvas的绘制内容。→ 合成多个Surface的内容。→ 将合成后的帧传递给显示控制器。Display→ 最终上屏显示。
2025-03-04 08:20:06
324
原创 【系统稳定性】1.12 QVM稳定性问题分析(二)
如前面提到的,qmv中la异常,就是linux kernel及其android os相关的异常引发的系统异常,该异常通常不会导致qnx或域控整机重启。我们可以通过分析,la_gvm.txt,或slog中过滤vmm_service或qvm,查看qvm状态信息。包括文件系统损坏,如存储设备上的文件系统(如ext4、F2FS)损坏,导致内核无法读取或写入数据,以及分区挂只读等。这种场景下,外设驱动未正确处理硬件状态,导致任务卡死。驱动或内核异常,如内存踩踏等导致的kernel panic,而导致qvm重启。
2025-03-02 14:08:46
239
原创 【系统稳定性】1.11 QVM稳定性问题分析(一)
在QVM(Quantum Virtual Machine)作为HOST QNX的Guest,同样会遇到重启、Watchdog(看门狗)等稳定性问题。qvm进程异常qmv中la异常qvm进程异常就很好理解了,我们就把他作为一个qnx内核上运行的一个native服务来看待,那么他具备所有进程所具备的基本属性。qvm进程异常包含进程本身设计问题,如锁同步的问题,依赖问题,资源调度问题等。qmv中la异常,就是linux kernel及其android os相关的异常引发的系统异常。
2025-03-01 22:05:43
409
原创 【系统稳定性】1.10 QNX Crash之Ramdump的分析(二)
系统正常可用,但串口无输出,且无法输入,可能是串口阻塞,串口无序频繁打印。当然除了串口阻塞的情况,也处存在包括前面提到的例如当前已经执行令了某种指令,或者本身也就没有打印,可以Ctrl+C强制退出指令尝试下。调试端口可用,但调试可用,执行卡顿。串口不响应或不能输入输出也有一种可能,例如当前已经执行令了某种指令,或者本身也就没有打印,可以Ctrl+C强制退出指令尝试下。或者另一种可能,系统资源跑飞,如cpu拉爆了,串口指令响应比较慢,可以wait a minite,and check。
2025-03-01 20:36:56
273
原创 1.6 【模型部署】本地部署DeepSeek模型 --- LM Studio篇(下)
选择不同的runtime,如下我通过选择了CPU llama.cpp (Windows)解决该问题,可以根据自己的硬件配置来选择不同的runtime。
2025-02-23 22:47:47
2455
原创 1.5【模型部署】本地部署DeepSeek模型 --- LM Studio篇(上)
LM Studio 是一款专为本地运行大型语言模型(LLMs)设计的工具,允许用户在个人电脑上轻松加载、管理和运行各种开源语言模型(如 LLaMA、Falcon、GPT-J 等)。通过LM Studio我们可以实现模型的完全离线运行,所有模型和数据都在本地处理,无需联网,保护隐私。它支持多种模型格式,包括兼容 Hugging Face 的模型格式(如 .bin、.ggml 等),方便用户导入和使用各种开源模型。
2025-02-23 22:41:53
1601
原创 【系统稳定性】1.14 冻屏
通过QNX查看是否发生gcore,及la ramdump(adb/bgm(obd)/redmoon/acu连接)这部分排查framework部分,时间的传递链路是否正常,比如是否有view消费等。替换mtouch驱动库(慎用,替换后会reset Touch芯片,会导致现象消失)以及排查/var/log/中是否io-pkt-v4-hc的反复coredump。检查adb链接,qnx连接(串口,acu,gbg,obd,redmoon等)查看/var/log/查看是否正在dump gcore;
2025-02-03 13:11:00
441
pageowner 解析工具
2022-05-13
SELinux4AndroidO
2018-02-05
recovery_l10n
2015-04-10
解决Android4.3彩信幻灯片中gif格式图片不能正常播放
2014-07-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅