Spark RDD 整理

9 篇文章 0 订阅
8 篇文章 0 订阅

目录

Spark计算模型... 1

1.      课程目标... 1

1.1.           熟练使用RDD的算子完成计算... 1

1.2.           掌握RDD的原理... 1

2.      弹性分布式数据集RDD.. 1

2.1.           RDD概述... 1

2.1.1.        什么是RDD.. 1

2.1.2.        RDD的特性... 1

2.2.           创建RDD.. 2

2.3.           RDD编程API2

2.3.1.        Transformation. 2

2.3.2.        Action. 4

2.3.3.        WordCount中的RDD.. 4

2.3.4.        WordCount中的RDD的数据过程... 5

2.4.           RDD的依赖关系... 6

2.4.1.        窄依赖... 6

2.4.2.        宽依赖... 6

2.4.3.        Lineage(血统):所谓血统,就是你爸爸和妈妈是谁,可以理解为上一个RDD和算子(转换行为)。    6

2.5.           RDD的缓存... 7

2.5.1.        RDD缓存方式... 7

2.6.           DAG的生成... 8

 

 

 

Spark计算模型

1.  课程目标

1.1.  熟练使用RDD的算子完成计算

1.2.  掌握RDD的原理

2.  弹性分布式数据集RDD

2.1.  RDD概述

2.1.1.  什么是RDD

RDD(ResilientDistributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

2.1.2.  RDD的特性

 

1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPUCore的数目。

 

2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

 

3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

 

4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

 

5)一个列表,存储存取每个Partition的优先位置(preferredlocation)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

2.2.  创建RDD

1)由一个已经存在的Scala集合创建。

val rdd1 =sc.parallelize(Array(1,2,3,4,5,6,7,8))

 

2)由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

val rdd2 =sc.textFile("hdfs://node1.itcast.cn:9000/words.txt")

2.3.  RDD编程API

2.3.1.  Transformation

RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这种设计让Spark更加有效率地运行。

 

常用的Transformation

转换

含义

map(func)

返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

filter(func)

返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

flatMap(func)

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

mapPartitions(func)

类似于mapmap是针对RDD的每一个元素,而mapPartitions是针对RDD的每一个分区进行处理,我们用InteratorT】表示一个分区。而Interator中装的就是RDD中分区的数据。

mapPartitionsWithIndex(func)

类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是

(Int, Interator[T]) => Iterator[U]

sample(withReplacement, fraction, seed)

根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子

union(otherDataset)

对源RDD和参数RDD求并集后返回一个新的RDD

intersection(otherDataset)

对源RDD和参数RDD求交集后返回一个新的RDD

distinct([numTasks]))

对源RDD进行去重后返回一个新的RDD

groupByKey([numTasks])   

在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD

reduceByKey(func, [numTasks])

 

 

在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置。

 

Reduce 的流程实际上和aggregatecombineByKey一样,每个分区先聚合,然后分区结果聚合。只不过在reduce中没有显性的写出来。

 

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

  和reduceByKey相似,只是这个是先对分区元素和初始值reduceByKey,然后对分区结果reduceByKey。

combineByKey()

因为combineByKeySpark中一个比较核心的高级函数,其他一些高阶键值对函数底层都是用它实现的。诸如 groupByKey,reduceByKey等等。  

CombineByKey是最灵活的。

 

 

partitionBy(Partitioner)

按哪种分区器进行重新分区。一般和自己写的分区器,一起使用。

sortByKey([ascending], [numTasks])

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

sortBy(func,[ascending], [numTasks])

与sortByKey类似,但是更灵活

join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD

cogroup(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD

cartesian(otherDataset)

笛卡尔积

pipe(command, [envVars])

 

coalesce(numPartitions,Boolean)

第二个参数:是否如许shuffle,不填得的话默认是false。不shuffle,就相当于合并,分区只能比原来少;可以shuffle就是可以自动调整分区大小

repartition(numPartitions)

是按照系统默认的HashPartitioner分区器重新分区,分成numPartitions(分区总数)

Reparation(n)底层就是调用了coalesce(n,true)

repartitionAndSortWithinPartitions(partitioner)

 

 

 

ReduceByKeyaggregateByKey都是对先按key值分组,然后在聚合。

 

2.3.2.  Action

动作

含义

aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U

说明:即每个分区内对 zeroValue 初始值和分区的数据进行 reduce ,再对各分区结果以及zeroValue初始值进行 reduce reduce 的区别是, aggregate 有对分区内的操作定义;还有初始值定义reduce 仅有一个统一的对所有元素的操作定义。    

reduce(func)

Reduce 的流程实际上和aggregatecombineByKey一样,每个分区先聚合,然后分区结果聚合。只不过在reduce中没有显性的写出来。

collect()

在驱动程序中,以数组的形式返回数据集的所有元素

count()

返回RDD的元素个数

first()

返回RDD的第一个元素(类似于take(1))

take(n)

返回一个由数据集的前n个元素组成的数组

takeSample(withReplacement,num, [seed])

返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子

takeOrdered(n[ordering])

 

saveAsTextFile(path)

将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

saveAsSequenceFile(path

将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

saveAsObjectFile(path

 

countByKey()

针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。

foreach(func)

在数据集的每一个元素上,运行函数func进行更新。

Foreachpartition(  jdbc连接)

                

Foreach(  jdbc连接)

 

每个分区,分别向数据库写数据,这可以解决数据输出效率的问题。

只有Driver向数据库写数据

2.3.3.  WordCount中的RDD

 

调用各种算子的时候,每个算子分别产生哪些RDD

这里有一点需要注意:

分区的作用范围是元素(k,v)的RDD,而那么textFile读取进来的数据不是一行行的吗,为什么还能分区那?

答:textFile产生两个RDD,首先会把数据映射成(k,v数据)的形式得到HadoopRDD,之后将数据(k,v)=> v ,在这个步骤进行分区,得到MapPartitionRDD。有兴趣可以查看Textfile—》HadoopFile的源码。

 

 

2.3.4.  WordCount中的RDD的数据过程

 

Reduce、reduceByKey、aggregate、aggregateBykey、conbineByKey都是包含了shuffle的过程以及得出结果。

 

 

 

2.4.  RDD的依赖关系

RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

2.4.1.  窄依赖

窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用

总结:窄依赖我们形象的比喻为独生子女

2.4.2.  宽依赖

宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition

总结:窄依赖我们形象的比喻为超生

2.4.3.  Lineage(血统):所谓血统,就是你爸爸和妈妈是谁,可以理解为上一个RDD和算子(转换行为)。

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

2.5.  RDD的缓存

Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。

2.5.1.  RDD的持久化(在rdd所在的程序运行结束后,持久化消失)

RDD通过persist方法或cache方法进行性持久化,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

注意persist是持久化的方法,cache只是缓存到内存中

实质:Persist(StorageLevel.Memory_Only)=cache

   如果不想用了,就通过RDD.unpersisttrue)就不缓存了。

通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

缓存有可能丢失,或者存储存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。

 

*_SER 是序列化存到内存或者磁盘上,序列化之后文件会小一些,但是需要消耗内存和cup进行序列化就比直接存储要慢一些。

 

2.6.  DAG的生成

DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值