可以将axis的参数理解为将原来的第0维移动至axis 的位置上(如torch的例子所示)
import numpy as np
import torch
a = np.arange(1,41,1).reshape(2,4,5)
ta = torch.from_numpy(a)
b = np.arange(41,81,1).reshape(2,4,5)
c = np.arange(81,121,1).reshape(2,4,5)
tb = torch.from_numpy(b)
tc = torch.from_numpy(c)
print(torch.stack((ta,tb,tc),axis = 0).shape) #3*2*4*5
print(torch.stack((ta,tb,tc),axis = 1).shape) #2*3*4*5
print(torch.stack((ta,tb,tc),axis = 2).shape) #2*4*3*5
print(torch.stack((ta,tb,tc),axis = 3).shape) #2*4*5*3
# torch.stack((ta,tb,tc),axis = 1)
print(np.stack((a,b,c),axis=0).shape)
print(np.stack((a,b,c),axis=1).shape)
print(np.stack((a,b,c),axis=2).shape)
print(np.stack((a,b,c),axis=3).shape)
print(np.stack(a,axis = 0).shape)
print(np.stack(a,axis = 0))
print(np.stack(a,axis = 1).shape)
print(np.stack(a,axis = 1))
print(np.stack(a,axis = 2).shape)
print(np.stack(a,axis = 2))
print(a)
print(np.vstack(a).shape)
print(np.vstack(a))
print(np.hstack(a).shape)
print(np.hstack(a))
print(np.vstack(va).shape)
print(np.vstack(va))
print(np.hstack(va).shape)
print(np.hstack(va))
/**
torch.Size([3, 2, 4, 5])
torch.Size([2, 3, 4, 5])
torch.Size([2, 4, 3, 5])
torch.Size([2, 4, 5, 3])
(3, 2, 4, 5)
(2, 3, 4, 5)
(2, 4, 3, 5)
(2, 4, 5, 3)
(2, 4, 5)
[[[ 1 2 3 4 5]
[ 6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]
[[21 22 23 24 25]
[26 27 28 29 30]
[31 32 33 34 35]
[36 37 38 39 40]]]
(4, 2, 5)
[[[ 1 2 3 4 5]
[21 22 23 24 25]]
[[ 6 7 8 9 10]
[26 27 28 29 30]]
[[11 12 13 14 15]
[31 32 33 34 35]]
[[16 17 18 19 20]
[36 37 38 39 40]]]
(4, 5, 2)
[[[ 1 21]
[ 2 22]
[ 3 23]
[ 4 24]
[ 5 25]]
[[ 6 26]
[ 7 27]
[ 8 28]
[ 9 29]
[10 30]]
[[11 31]
[12 32]
[13 33]
[14 34]
[15 35]]
[[16 36]
[17 37]
[18 38]
[19 39]
[20 40]]]
[[[ 1 2 3 4 5]
[ 6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]
[[21 22 23 24 25]
[26 27 28 29 30]
[31 32 33 34 35]
[36 37 38 39 40]]]
(8, 5)
[[ 1 2 3 4 5]
[ 6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]
[21 22 23 24 25]
[26 27 28 29 30]
[31 32 33 34 35]
[36 37 38 39 40]]
(4, 10)
[[ 1 2 3 4 5 21 22 23 24 25]
[ 6 7 8 9 10 26 27 28 29 30]
[11 12 13 14 15 31 32 33 34 35]
[16 17 18 19 20 36 37 38 39 40]]
(3, 4)
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
(12,)
[ 1 2 3 4 5 6 7 8 9 10 11 12]
**/