1027. 最长等差数列-动态规划

该代码片段使用动态规划解决了一个问题,即在给定整数数组nums中找到具有最大长度的等差子序列。通过遍历数组并计算每个元素与其他元素之间的公差,更新以每个元素结尾的最长等差序列长度,最终返回最长序列的长度加一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class Solution {
public:
    int longestArithSeqLength(vector<int>& nums) {
        int n =  nums.size();
			int f[n][1001];  //横坐标表示第i个数,纵坐标表示当前数与其他它前面数的公差是多少,f[i][k]表示的该公差的个数
			memset(f , 0 ,sizeof(f)); //数组初始化
			
			int ans = 0;
			for(int i = 0 ; i<n ; i++)
			{
				for(int j = 0 ; j <i ; j ++)
				{
					int k = nums[i] - nums[j] + 500;//当前数与前面数的公差为多少
					 //f[i][k] = max(f[i][k],f[j][k]+1);   f[i][j]恒等等于0
                    f[i][k] = f[j][k] + 1;  // 表示以 nums[i]nums[i] 结尾且公差为 jj 的等差数列的最大长度。
					ans = max(f[i][k],ans);
				}
			}
			return ans+1 ;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值