可伸缩分布式ML的Parameter Server的学习笔记-1

一:PS架构的概要

        a)数据和工作任务都会在work nodes之间分布,Server维持GSP,并且通过稀疏、稠密向量或者矩阵来表示

        b)框架异步管理数据的交互处理,支持灵活一致性数据模型,弹性可伸缩,持续的失败容错


二:架构设计难题

       分布式优化和推理,需要实现分布式高效算法

       a.密集的计算任务

       b.需要传输的数据量

需要解决的问题

      1.存取参数,需要巨大的网络带宽

       2.许多机器学习算法都是顺序的,所以结果栅栏在同步阶段会严重损伤性能,机器延迟度很高

       3.在可伸缩性方面,失败容错是基本保证,而学习性任务在云环境下,机器通常是不可靠的,并且被抢占。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值