NYOJ-117 求逆序数(离散化+树状数组)/(归并)

求逆序数

时间限制: 2000  ms  |  内存限制: 65535  KB
难度: 5
描述

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

现在,给你一个N个元素的序列,请你判断出它的逆序数是多少。

比如 1 3 2 的逆序数就是1。

输入
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
每组测试数据的每一行是一个整数N表示数列中共有N个元素(2〈=N〈=1000000)
随后的一行共有N个整数Ai(0<=Ai<1000000000),表示数列中的所有元素。

数据保证在多组测试数据中,多于10万个数的测试数据最多只有一组。
输出
输出该数列的逆序数
样例输入
2
2
1 1
3
1 3 2
样例输出
0
1
来源
[张云聪]原创


1.

因为cmp函数wa了好久,给的1 1 不能发现问题,多测数据才能发现问题

 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long ll;
const int N = 1000005;
struct node
{
    int pos;
    ll val;
}nod[N];
int C[N],r[N];
int n;


bool cmp(node a,node b)
{
    if(a.val == b.val)
        return a.pos < b.pos;
    return a.val < b.val;
}


int lowbit(int t)
{
    return t&(-t);
}


void add(int t)
{
    while(t <= N)
    {
        C[t] += 1;
        t += lowbit(t);
    }
}



//求得前面小于当前的数的个数
ll getnum(int t)
{
    ll ans = 0;
    while(t > 0)
    {
        ans += C[t];
        t -= lowbit(t);
    }
    return ans;
}


int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        memset(C,0,sizeof(C));

        for(int i = 1;i <= n;i++)
        {
            scanf("%lld",&nod[i].val);
            nod[i].pos = i;
        }
        sort(nod+1, nod+1+n,cmp);//先sort
        for(int i = 1;i <= n;i++)//离散化处理
            r[nod[i].pos] = i;
        ll ans = 0,k;
        for(int i = 1;i <= n;i++)
        {
            add(r[i]);
            k = i - getnum(r[i]);
            ans += k;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
        


2.归并

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 1000005;
int a[N],b[N];
long long sum = 0;
void mergesort(int *a,int left,int right,int *T)
{
    if(left >= right)
        return;
    int mid = left + (right-left) / 2;
    int i = left,j = mid+1,k = left;
    mergesort(a,left,mid,T);
    mergesort(a,mid+1,right,T);
    while(i <= mid && j <= right)
    {
        if(a[i] <= a[j])
            T[k++] = a[i++];
        else
            T[k++] = a[j++],sum += mid-i+1;
    }
    while(i <= mid) T[k++] = a[i++];
    while(j <= right) T[k++] = a[j++];
    for(int i = left;i <= right;i++)
        a[i] = T[i];
}
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        sum = 0;
        scanf("%d",&n);
        for(int i = 1;i <= n;i++)
            scanf("%d",&a[i]);
        mergesort(a,1,n,b);
        printf("%lld\n",sum);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值