求逆序数
时间限制:
2000
ms | 内存限制:
65535
KB
难度:
5
-
描述
-
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
现在,给你一个N个元素的序列,请你判断出它的逆序数是多少。
比如 1 3 2 的逆序数就是1。
-
输入
-
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
每组测试数据的每一行是一个整数N表示数列中共有N个元素(2〈=N〈=1000000)
随后的一行共有N个整数Ai(0<=Ai<1000000000),表示数列中的所有元素。
数据保证在多组测试数据中,多于10万个数的测试数据最多只有一组。
输出
- 输出该数列的逆序数 样例输入
-
2 2 1 1 3 1 3 2
样例输出
-
0 1
来源
- [张云聪]原创
-
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
1.
因为cmp函数wa了好久,给的1 1 不能发现问题,多测数据才能发现问题
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1000005;
struct node
{
int pos;
ll val;
}nod[N];
int C[N],r[N];
int n;
bool cmp(node a,node b)
{
if(a.val == b.val)
return a.pos < b.pos;
return a.val < b.val;
}
int lowbit(int t)
{
return t&(-t);
}
void add(int t)
{
while(t <= N)
{
C[t] += 1;
t += lowbit(t);
}
}
//求得前面小于当前的数的个数
ll getnum(int t)
{
ll ans = 0;
while(t > 0)
{
ans += C[t];
t -= lowbit(t);
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(C,0,sizeof(C));
for(int i = 1;i <= n;i++)
{
scanf("%lld",&nod[i].val);
nod[i].pos = i;
}
sort(nod+1, nod+1+n,cmp);//先sort
for(int i = 1;i <= n;i++)//离散化处理
r[nod[i].pos] = i;
ll ans = 0,k;
for(int i = 1;i <= n;i++)
{
add(r[i]);
k = i - getnum(r[i]);
ans += k;
}
printf("%lld\n",ans);
}
return 0;
}
2.归并
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1000005;
int a[N],b[N];
long long sum = 0;
void mergesort(int *a,int left,int right,int *T)
{
if(left >= right)
return;
int mid = left + (right-left) / 2;
int i = left,j = mid+1,k = left;
mergesort(a,left,mid,T);
mergesort(a,mid+1,right,T);
while(i <= mid && j <= right)
{
if(a[i] <= a[j])
T[k++] = a[i++];
else
T[k++] = a[j++],sum += mid-i+1;
}
while(i <= mid) T[k++] = a[i++];
while(j <= right) T[k++] = a[j++];
for(int i = left;i <= right;i++)
a[i] = T[i];
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
sum = 0;
scanf("%d",&n);
for(int i = 1;i <= n;i++)
scanf("%d",&a[i]);
mergesort(a,1,n,b);
printf("%lld\n",sum);
}
return 0;
}