CodeForces - 620 D. Professor GukiZ and Two Arrays(二分)

题目:http://codeforces.com/contest/620/problem/D
题意:给你两个数组,a数组和b数组
你有操作–将a数组数组中的一个元素与b数组中的一个元素交换
这种操作只能出现k次(0<=k<=2),使得abs(∑a-∑b)最小
输出方案
思路:
k = 0……
k = 1,(∑a-a[i]+b[j])-(∑b+a[i]-b[j]) = ∑a-∑b+2(b[j]-a[i])
k = 2,将a任意两项合成一项,b两项任意两项合成一项,然后参考”k=1”,二分查找
代码参考卿学姐

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 2005;
int a[N],b[N];
pair<int,int> p1;
pair<int,int> q1,q2;
pair<ll, pair<int,int> > p[N*N];

int main()
{
    int n,m;
    ll d0 = 0;//不交换
    scanf("%d",&n);
    for(int i = 1;i <= n;i++)
        scanf("%d",&a[i]),d0 += a[i];
    scanf("%d",&m);
    for(int j = 1;j <= m;j++)
        scanf("%d",&b[j]),d0 -= b[j];

    ll d1 = 1e18;//交换一次
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= m;j++)
        {
            if(d1 > abs(d0-2*a[i]+2*b[j]))
            {
                d1 = abs(d0-2*a[i]+2*b[j]);
                p1 = make_pair(i,j);
            }
        }
    int cnt = 0;
    for(int i = 1;i <= m;i++)
        for(int j = i+1;j <= m;j++)
            p[++cnt] = make_pair(2ll*b[i]+2ll*b[j], make_pair(i,j));
    sort(p+1,p+cnt+1);
    ll d2 = 1e18;//交换两次
    for(int i = 1;i <= n;i++)
    {
        for(int j = i+1;j <= n;j++)
        {
            ll tmp = 2ll*a[i]+2ll*a[j] - d0;
            int pos = lower_bound(p+1,p+cnt+1,make_pair(tmp,make_pair(0,0)))-p;
            for(int k = max(1,pos-2);k <= min(cnt,pos+2);k++)
            {
                if(abs(p[k].first-tmp) < d2)
                {
                    d2 = abs(p[k].first-tmp);
                    q1 = make_pair(i,p[k].second.first);
                    q2 = make_pair(j,p[k].second.second);
                }
            }
        }
    }
    //cout<<d0<<" "<<d1<<" "<<d2<<endl;
    d0 = abs(d0);
    ll minn = min(d0,min(d1,d2));
    printf("%lld\n",minn);
    if(minn == d0)
        printf("0\n");
    else if(minn == d1)
        printf("1\n%d %d\n",p1.first,p1.second);
    else
        printf("2\n%d %d\n%d %d\n",q1.first,q1.second,q2.first,q2.second);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值