用python爬取历史天气数据

本文介绍如何使用Python爬虫从某天气网站获取2011年以来的历史天气数据。首先分析URL结构,找到城市代码和年份月份代码,构建URL列表。接着利用正则表达式提取数据,避开2017年前后的数据格式差异。数据解析过程中遇到的坑包括城市代码变化、污染物信息的不确定性等。最后,将数据存储到sqlite3数据库,解决字段动态增加的问题,成功爬取334个城市,100多万条数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某天气网站(www.数字.com)存有2011年至今的天气数据,有天看到一本爬虫教材提到了爬取这些数据的方法,学习之,并加以改进。

准备爬的历史天气

爬之前先分析url。左上有年份、月份的下拉选择框,按F12,进去看看能否找到真正的url:

54511-20161.js

很容易就找到了,左边是储存月度数据的js文件,右边是文件源代码,貌似json格式。

双击左边js文件,地址栏内出现了url:http://tianqi.数字.com/t/wea_history/js/54511_20161.js

url中的“54511”是城市代码,“20161”是年份和月份代码。下一步就是找到城市代码列表,按城市+年份+月份构造url列表,就能开始遍历爬取了。

城市代码也很诚实,

好的,您想了解如何用 Python 爬取历史天气数据,是吗? 首先,需要确定您想要爬取哪个地区的历史天气数据。一般来说,可以通过查询该地区的气象局或气象网站获取历史天气数据。 接着,可以使用 Python 中的 requests 库来发送 HTTP 请求,获取网页源代码。然后,可以使用 BeautifulSoup 库来解析网页源代码,提取出所需的天气数据。 以下是一个简单的示例代码,用于爬取中国天气网上北京市 2019 年 1 月份的历史天气数据: ``` python import requests from bs4 import BeautifulSoup url = 'http://www.weather.com.cn/weather/101010100.shtml#dt' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} r = requests.get(url, headers=headers) r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html.parser') weather_list = soup.select('.t li') for weather in weather_list: date = weather.select('.time')[0].text weather_detail = weather.select('.temp')[0].text.strip() print(date, weather_detail) ``` 以上代码中,我们首先通过 requests 库发送了一个 GET 请求,获取了北京市天气网的网页源代码。然后,使用 BeautifulSoup 库解析网页源代码,提取出了 2019 年 1 月份的天气数据,并打印输出了日期和天气详情。 需要注意的是,不同的网站网页结构不同,需要根据具体情况修改代码。同时,需要注意网站的 robots.txt 文件,不要过度访问网站,以免被封 IP 或其他限制。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值