BZOJ-2154 Crash的数字表格

BZOJ-2154 Crash的数字表格

题目传送门1
题目传送门2

解法

请注意!下文中默认 n ≤ m n\leq m nm !!!
一步一步推:

f ( n , m ) = ∑ i = 1 n ∑ j = 1 m lcm ⁡ ( i , j ) f ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j gcd ⁡ ( i , j ) f ( n , m ) = ∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) ⋅ i gcd ⁡ ( i , j ) ⋅ j gcd ⁡ ( i , j ) \begin{aligned} f(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m \operatorname{lcm}(i,j) \\f(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m \frac{i\cdot j}{\gcd(i,j)} \\f(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m \gcd(i,j)\cdot\frac{i}{\gcd(i,j)}\cdot\frac{j}{\gcd(i,j)} \end{aligned} f(n,m)=f(n,m)=f(n,m)=i=1nj=1mlcm(i,j)i=1nj=1mgcd(i,j)iji=1nj=1mgcd(i,j)gcd(i,j)igcd(i,j)j

我们调整一下枚举顺序可得( d d d 表示 gcd ⁡ \gcd gcd):

f ( n , m ) = ∑ d = 1 n d ⋅ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] i ⋅ j \begin{aligned} f(n,m)=&\sum\limits_{d=1}^n d\cdot \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} [\gcd(i,j)=1]i\cdot j \end{aligned} f(n,m)=d=1ndi=1dnj=1dm[gcd(i,j)=1]ij

我们先不管前面的部分,设 g ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = 1 ] i ⋅ j g(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} [\gcd(i,j)=1]i\cdot j g(n,m)=i=1nj=1m[gcd(i,j)=1]ij 我们看到 [ gcd ⁡ ( i , j ) = 1 ] [\gcd(i,j)=1] [gcd(i,j)=1] 自然可以想到用 ε \varepsilon ε 表示,再用 μ ∗ 1 \mu\ast 1 μ1 来表示:

g ( n , m ) = ∑ i = 1 n ∑ j = 1 m ε ( gcd ⁡ ( i , j ) ) ⋅ i ⋅ j g ( n , m ) = ∑ i = 1 n ∑ j = 1 m ( μ ∗ 1 ) ( gcd ⁡ ( i , j ) ) ⋅ i ⋅ j g ( n , m ) = ∑ i = 1 n ∑ j = 1 m ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) ⋅ i ⋅ j \begin{aligned} g(n,m)=&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \varepsilon(\gcd(i,j))\cdot i\cdot j \\g(n,m)=&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} (\mu\ast 1)(\gcd(i,j))\cdot i\cdot j \\g(n,m)=&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{d\mid \gcd(i,j)} \mu(d)\cdot i\cdot j \end{aligned} g(n,m)=g(n,m)=g(n,m)=i=1nj=1mε(gcd(i,j))iji=1nj=1m(μ1)(gcd(i,j))iji=1nj=1mdgcd(i,j)μ(d)ij

故技重施,我们还是先枚举 d d d

g ( n , m ) = ∑ d = 1 n μ ( d ) ⋅ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ( d ⋅ i ) ⋅ ( d ⋅ j ) g ( n , m ) = ∑ d = 1 n μ ( d ) ⋅ d 2 ⋅ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i ⋅ j \begin{aligned} g(n,m)=&\sum\limits_{d=1}^n\mu(d)\cdot\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor} (d\cdot i)\cdot(d\cdot j) \\g(n,m)=&\sum\limits_{d=1}^n\mu(d)\cdot d^2\cdot\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor} i\cdot j \end{aligned} g(n,m)=g(n,m)=d=1nμ(d)i=1dnj=1dm(di)(dj)d=1nμ(d)d2i=1dnj=1dmij

我们再次剥离式子,设 h ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j h(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} i\cdot j h(n,m)=i=1nj=1mij

h ( n , m ) = ( ∑ i = 1 n i ) ⋅ ( ∑ j = 1 m j ) h ( n , m ) = n ∗ ( n + 1 ) 2 ⋅ m ∗ ( m + 1 ) 2 \begin{aligned} h(n,m)=&(\sum\limits_{i=1}^{n} i)\cdot(\sum\limits_{j=1}^{m} j) \\h(n,m)=&\frac{n*(n+1)}{2}\cdot\frac{m*(m+1)}{2} \end{aligned} h(n,m)=h(n,m)=(i=1ni)(j=1mj)2n(n+1)2m(m+1)

好的我们的式子已经推到了可以用 O ( 1 ) O(1) O(1) 时间可以求解的式子了,我们再来一步一步带回去。

g ( n , m ) = ∑ d = 1 n μ ( d ) ⋅ d 2 ⋅ h ( ⌊ n d ⌋ , ⌊ m d ⌋ ) g(n,m)=\sum\limits_{d=1}^n\mu(d)\cdot d^2\cdot h(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor) g(n,m)=d=1nμ(d)d2h(dn,dm)

可以用数论分块解决, μ ( d ) ⋅ d 2 \mu(d)\cdot d^2 μ(d)d2 可以用前缀和来维护。

f ( n , m ) = ∑ d = 1 n d ⋅ g ( ⌊ n d ⌋ , ⌊ m d ⌋ ) f(n,m)=\sum\limits_{d=1}^n d\cdot g(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor) f(n,m)=d=1ndg(dn,dm)

真巧,还是数论分块。总时间复杂度 O ( n + m ) O(n+m) O(n+m)

//Don't act like a loser.
//You can only use the code for studying or finding mistakes
//Or,you'll be punished by Sakyamuni!!!
#include<bits/stdc++.h>
#define int long long
using namespace std;

int read() {
	char ch=getchar();
	int f=1,x=0;
	while(ch<'0'||ch>'9') {
		if(ch=='-')
			f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9') {
		x=x*10+ch-'0';
		ch=getchar();
	}
	return f*x;
}

const int maxn=1e7+10,mod=20101009; 

int n,m,mu[maxn],p[maxn/3],cnt,s[maxn];
bool is[maxn];

void sieve(int n) {
	mu[1]=1;
	for(int i=2;i<=n;i++) {
		if(!is[i]) {
			p[++cnt]=i;
			mu[i]=-1;
		}
		
		for(int j=1;j<=cnt;j++) {
			if(i*p[j]>n) {
				break;
			}
			is[i*p[j]]=1;
			if(i%p[j]==0) {
				mu[i*p[j]]=0;
				break;
			}
			mu[p[j]*i]=-mu[i];
		} 
	}
	for(int i=1;i<=n;i++) {
		s[i]=(s[i-1]+(mu[i]+mod)%mod*i%mod*i%mod)%mod;
	}
}

int h(int n,int m) {
	return (n*(n+1)/2)%mod*(m*(m+1)/2%mod)%mod;
}
int g(int n,int m) {
	int ret=0,j;
	for(int i=1;i<=n;i=j+1) {
		j=min(n/(n/i),m/(m/i));
		ret+=(s[j]-s[i-1]+mod)%mod*h(n/i,m/i)%mod;
		ret%=mod; 
	}
	return ret;
}
int f(int n,int m) {
	int ret=0,j;
	for(int i=1;i<=n;i=j+1) {
		j=min(n/(n/i),m/(m/i));
		ret+=(j-i+1)*(i+j)/2%mod*g(n/i,m/i)%mod; 
		ret%=mod;
	}
	return ret;
}

signed main() {
	cin>>n>>m;
	
	if(n>m) {
		swap(n,m);//这一步至关重要!!!
	}
	sieve(n);
	
	printf("%lld\n",f(n,m));
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值