提示:给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
前言
力扣双指针问题。前面的二分法的本质也是双指针问题
提示:以下是本篇文章正文内容,下面案例可供参考
一、双指针问题是什么?
什么是双指针(包括对撞指针、快慢指针两种)
双指针,指的是在遍历对象的过程中,不是普通的使用单个指针进行访问,而是使用两个相同方向(快慢指针)或者相反方向(对撞指针)的指针进行扫描,从而达到相应的目的。
换言之,双指针法充分使用了数组有序这一特征,从而在某些情况下能够简化一些运算。
对撞指针
对撞指针是指在有序数组中,将指向最左侧的索引定义为左指针(left),最右侧的定义为右指针(right),然后从两头向中间进行数组遍历。
对撞数组适用于有序数组,也就是说当你遇到题目给定有序数组时,应该第一时间想到用对撞指针解题。
快慢指针
快慢指针也是双指针,但是两个指针从同一侧开始遍历数组,将这两个指针分别定义为快指针(fast)和慢指针(slow),两个指针以不同的策略移动,直到两个指针的值相等(或其他特殊条件)为止,如fast每次增长两个,slow每次增长一个。
判断给定链表中是否存在环,可以定义快慢两个指针,快指针每次增长一个,而慢指针每次增长两个,最后两个指针指向节点的值相等,则说明有环。就好像一个环形跑道上有一快一慢两个运动员赛跑,如果时间足够长,跑地快的运动员一定会赶上慢的运动员。
二、解题代码
代码如下
public int[] sortedSquares(int[] nums) {
int low = 0;
int high = nums.length - 1;
int[] results = new int[nums.length];
//双指针的插入问题,需要在高低指针之外另外设置插入元素位置的标记指针
int index = nums.length - 1;
while (low <= high){
if (nums[low]*nums[low] > nums[high]*nums[high]){
//从最高到最低,对数据插入位置进行自减(i++是先进行运算,然后再自增)
results[index--] = nums[low]*nums[low];
low ++;
}else {
results[index--] = nums[high]*nums[high];
high --;
}
}
return results;
}
下面是189题的代码
class Solution {
public void rotate(int[] nums, int k) {
k %= nums.length;
reverse(nums, 0, nums.length - 1);
reverse(nums, 0, k - 1);
reverse(nums, k, nums.length - 1);
}
public void reverse(int[] nums, int start, int end) {
while (start < end) {
int temp = nums[start];
nums[start] = nums[end];
nums[end] = temp;
start += 1;
end -= 1;
}
}
}
通过自定义数组反转的方法,进行三次数组反转完成题目。
- 第一次:整个数组反转
- 第二次:前半部分反转
- 第三次:后半部分反转
定义了临时变量temp存储起始元素。通过不断交换某段数组的首位元素来实现数组反转。(实际上也就是对撞双指针问题。)
总结
- 有序数组考虑使用对撞指针降低时间复杂度
- 涉及到插入时,往往需要额外声明一个指针,作为插入位置的标记。
- 第二个问题的数组反转问题实际上也是对撞双指针问题。