动态规划策略的定义
动态规划和备忘录共同作用。动态规划和分治法的主要区别在于:对于后者,子问题是相互独立的,而在动态规划中,子问题可能是重叠的,通过使用备忘录(用于保存已解决子问题的答案)。对于大部分问题,动态规划是能够将问题的时间复杂度由指数级如O(n2)、O(n3)降低为多项式级别的
一、问题描述
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
二、暴力法(将会超出时间限制)
代码如下
public int maxProfit(int[] prices) {
int maxprofit = 0;
for (int i = 0; i < prices.length - 1; i++) {
for (int j = i + 1; j < prices.length; j++) {
int profit = prices[j] - prices[i];
if (profit > maxprofit) {
maxprofit = profit;
}
}
}
return maxprofit;
}
二、动态规划
该方法来自力扣用户 北冥有鱼,比官方解法更容易理解
思路还是挺清晰的,DP思想:
- 记录【今天之前买入的最小值】
- 计算【今天之前最小值买入,今天卖出的获利】,也即【今天卖出的最大获利】
- 比较【每天的最大获利】,取最大值即可
public int maxProfit(int[] prices) {
if(prices.length <= 1)
return 0;
int min = prices[0], max = 0;
for(int i = 1; i < prices.length; i++) {
max = Math.max(max, prices[i] - min);
min = Math.min(min, prices[i]);
}
return max;
}
补充:力扣No.53-最大子数组
public static int maxSubArray(int[] nums) {
if (nums.length == 1) {
return nums[0];
}
//局部最优解
int preSum = 0;
//全局最优解
int maxSum = nums[0];
for (int num : nums) {
//局部最优解preSum,也就是所谓的“记事本”
preSum = Math.max(preSum + num, num);
//从记事本中找到全局最优解
maxSum = Math.max(maxSum, preSum);
}
return maxSum;
}