力扣No.121——初识动态规划思想(Java实现)

本文介绍了动态规划策略在解决股票交易最大利润问题(LeetCode No.53)和最大子数组和问题中的应用。通过对比暴力求解和动态规划方法,展示了动态规划如何通过保存子问题答案降低时间复杂度。文章提供了详细的代码实现,解释了动态规划的思路,包括记录当天之前买入的股票最低价格和计算每天的最大利润。
摘要由CSDN通过智能技术生成


动态规划策略的定义

动态规划和备忘录共同作用。动态规划和分治法的主要区别在于:对于后者,子问题是相互独立的,而在动态规划中,子问题可能是重叠的,通过使用备忘录(用于保存已解决子问题的答案)。对于大部分问题,动态规划是能够将问题的时间复杂度由指数级如O(n2)、O(n3)降低为多项式级别的


一、问题描述

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
在这里插入图片描述

二、暴力法(将会超出时间限制)

代码如下

public int maxProfit(int[] prices) {
        int maxprofit = 0;
        for (int i = 0; i < prices.length - 1; i++) {
            for (int j = i + 1; j < prices.length; j++) {
                int profit = prices[j] - prices[i];
                if (profit > maxprofit) {
                    maxprofit = profit;
                }
            }
        }
        return maxprofit;
    }

二、动态规划

该方法来自力扣用户 北冥有鱼,比官方解法更容易理解
思路还是挺清晰的,DP思想:

  1. 记录【今天之前买入的最小值】
  2. 计算【今天之前最小值买入,今天卖出的获利】,也即【今天卖出的最大获利】
  3. 比较【每天的最大获利】,取最大值即可
public int maxProfit(int[] prices) {
        if(prices.length <= 1)
            return 0;
        int min = prices[0], max = 0;
        for(int i = 1; i < prices.length; i++) {
            max = Math.max(max, prices[i] - min);
            min = Math.min(min, prices[i]);
        }
        return max;
    }

补充:力扣No.53-最大子数组

在这里插入图片描述

public static int maxSubArray(int[] nums) {
        if (nums.length == 1) {
            return nums[0];
        }
        //局部最优解
        int preSum = 0;
        //全局最优解
        int maxSum = nums[0];
        for (int num : nums) {
            //局部最优解preSum,也就是所谓的“记事本”
            preSum = Math.max(preSum + num, num);
            //从记事本中找到全局最优解
            maxSum = Math.max(maxSum, preSum);
        }
        return maxSum;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值