3. 设计模式 适配器模式

1.类结构模式模式的定义与特点

适配器模式(Adapter)的定义如下:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。适配器模式分为类结构型模式和对象结构型模式两种,前者类之间的耦合度比后者高,且要求程序员了解现有组件库中的相关组件的内部结构,所以应用相对较少些。

该模式的主要优点如下。

  • 客户端通过适配器可以透明地调用目标接口。
  • 复用了现存的类,程序员不需要修改原有代码而重用现有的适配者类。
  • 将目标类和适配者类解耦,解决了目标类和适配者类接口不一致的问题。

 

其缺点是:对类适配器来说,更换适配器的实现过程比较复杂。

原文链接

http://www.javaxmw.com/info?intId=19

1.类结构模式

public class Adapter {
   public static void main(String[] args) {
      System.out.println("类适配器模式测试:");
      Target target = new ClassAdapter();
      target.request();
   }
}

// 目标接口
interface Target {
   public void request();
}

// 适配器接口
class Adaptee {
   public void specificRequest() {
      System.out.println("适配者中的业务代码被调用!");
   }

}

// 类适配器类
class ClassAdapter extends Adaptee implements Target {

   @Override
   public void request() {
      specificRequest();
   }

}

 

2 .对象模式

 

//2.对象模式
public class ObjectAdapterJ {
     public static void main(String[] args)
       {
          System.out.println("对象适配器模式测试:");
           Adaptee adaptee = new Adaptee();
           Target target = new ObjectAdapter(adaptee);
           target.request();
       }
}

//类适配器类
class ObjectAdapter  implements Target {
   private Adaptee adaptee;
    public ObjectAdapter(Adaptee adaptee)
    {
        this.adaptee=adaptee;
    }
   @Override
   public void request() {
      adaptee.specificRequest();
   }
}

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值