算法导论-3函数增长率

目录

1. 渐进记号Θ、Ο、o、Ω、ω的定义及其使用

1)渐近紧确界记号:Ɵ(big-theta):

2)渐近上界记号:O(big-oh)

3)渐近下界记号:Ω(big-omega)

4)非渐近紧确上界:o(小-oh)

5)非渐近紧确下界:ω(小-omege)

2. 渐近记号Θ、Ο、o、Ω、ω关系

3. 和式界的证明方法



1. 渐进记号Θ、Ο、o、Ω、ω的定义及其使用

1)渐近紧确界记号:Ɵ(big-theta):

由下图中左侧f(n)=Θ(g(n))图可以看出,对所有n>n0时,函数f(n)乘一个常量因子可等于g(n),我们称g(n)是f(n)的一个渐近紧确界 。Θ记号在五个记号中,要求是最严格的,因为g(n)即可以表示上界也可以表示下界。

需要注意的是:Θ(g(n))的定义要求每个成员f(n)∈Θ(g(n))均渐近非负,即当n足够大时,f(n)非负。渐近正函数就是对所有足够大的n均为正的函数。

 

2)渐近上界记号:O(big-oh)

定义:设f(n)和g(n)是定义域为自然数集N上的函数。若存在正数cn0,使得对一切nn0都有0f(n)cg(n)成立,则称f(n)的渐进的上界是g(n),记作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值