目录
1. 渐进记号Θ、Ο、o、Ω、ω的定义及其使用
1)渐近紧确界记号:Ɵ(big-theta):
由下图中左侧f(n)=Θ(g(n))图可以看出,对所有n>n0时,函数f(n)乘一个常量因子可等于g(n),我们称g(n)是f(n)的一个渐近紧确界 。Θ记号在五个记号中,要求是最严格的,因为g(n)即可以表示上界也可以表示下界。
需要注意的是:Θ(g(n))的定义要求每个成员f(n)∈Θ(g(n))均渐近非负,即当n足够大时,f(n)非负。渐近正函数就是对所有足够大的n均为正的函数。
2)渐近上界记号:O(big-oh)
定义:设f(n)和g(n)是定义域为自然数集N上的函数。若存在正数c和n0,使得对一切n≥n0都有0≤f(n)≤cg(n)成立,则称f(n)的渐进的上界是g(n),记作