数据结构学习笔记——算法

2. 算法

  • 算法:算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作

2.1 算法的特性

  算法具有五个基本特性:输入、输出、有穷性、确定性和可行性。

  • 输入: 算法具有零个或多个输入。
  • 输出: 算法至少有一个或多个输出。
  • 有穷性:指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成。
  • 确定性:算法的每一步骤都具有确定的含义,不会出现二义性。
  • 可行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成。

2.2 算法设计的要求

  算法不是唯一的,同一个问题,可以有多种解决问题的算法。

2.2.1 正确性

  算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性、能够正确反映问题的需求、能够得到问题的正确答案
  但是算法的“正确”通常在用法上有很大的差别,大体分以下四个层次:

  1. 算法程序没有语法错误
  2. 算法程序对于合法的输入数据能够产生满足要求的输出结果
  3. 算法程序对于非法的输入数据能够得出满足规格说明的结果
  4. 算法程序对于精心选择的,甚至刁难的测试数据都有满足要求的输出结果

2.2.2 健壮性

  健壮性:当输入数据不合法时,算法也能做出相关处理,而不是产生异常或莫名其妙的结果。

2.2.3 时间效率高和存储量低

  设计算法应该尽量满足时间效率高和存储量低的需求。

2.3 算法效率的度量方法

  • 事后统计方法:这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。(这种方法存在较大缺陷,不予采纳)
  • 事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算。

2.4 函数的渐近增长

  输入规模n在没有限制的情况下,只要超出一个数值N,这个函数就总是大于另一个函数,我们称函数是渐近增长的。

函数的渐近增长:给定两个函数f(n)和g(n),如果存在一个整数N,使得所有的n>N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于g(n)

  判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而应该关注主项(最高阶项)。

2.5 算法时间复杂度

2.5.1 算法时间复杂度定义

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度。记作T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度。其中f(n)是问题规模n的过个函数。

2.5.2 推导大O阶方法

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

2.5.3 常数阶

  顺序结构的时间复杂度。下面这个算法:

int sum = 0,n =100;     /* 执行一次 */
sum = (1+n) * n/2;      /* 执行一次 */
printf("%d",sum);       /* 执行一次 */

  这个算法的运行次数函数是f(n) = 3。根据推导大O阶的方法,第一步就是把常数项3改为1。没有最高项,所以这个算法的时间复杂度为O(1)。注意:不管常数是多少,都记作O(1),而不能是O(3)、O(11)等。
  对于分支结构而言,无论是真还是假,执行的次数都是恒定的,不会随着n的变大而发生变化。所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。

2.5.4 线性阶

  线性阶的循环结构会复杂很多。要确定某个算法的阶次,需要确定某个特定语句或某个语句集运行的次数。故分析算法的复杂度,关键就是要分析循环结构的运行情况。下面这段代码的循环时间复杂度为O(n),因为循环体中的代码必须要执行n次。

for (int i = 0; i < n;i++)
{
    /* 时间复杂度为O(1)的程序步骤序列 */
}

2.5.5 对数阶

int count = 1;
while (count < n)
{
    count = count * 2;
    /* 时间复杂度为O(1)的程序步骤序列 */
}

  由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n就会退出循环。由 2 x = n 2^x=n 2x=n得到 log ⁡ 2 n \log_{2}{n} log2n。所以这个循环的时间复杂度为O( log ⁡ 2 n \log_{2}{n} log2n)。

2.5.6 平方阶

  下面例子是一个循环嵌套,他的内循环时间复杂度为O(n)。

for(int i = 0; i < n; i++)
{
    for(int j = 0; j < n; j++)
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

  而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度O( n 2 n^2 n2)。如果外循环的循环次数改为了m,时间复杂度就变成了O( m x n mxn mxn)。

2.5.7 常见的时间复杂度 常见时间复杂度

  • 常见的时间复杂度所耗费的时间从小到大依次是:

O(1) < O($log_{x}{n}$) < O(n$log_{x}{n}$) < O($n^2$) < O($n^3$) < O($2^n$) < O(n!) < O(n^n)

2.5.8 最坏情况与平均情况

  最坏的情况运行时间是一种保证,那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求,通常,除非特备指定,我们提到的运行时间都是最坏情况的运行时间。
  平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。一般在没有特殊说明的情况下,都是指最坏时间复杂度。

2.6 算法空间复杂度

  算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作: S ( n ) = O ( f ( n ) ) S(n) = O(f(n)) S(n)=O(f(n)),其中,n 为问题的规模,f(n)为语句关于n所占存储空间的函数。

2.7 总结

  本次认识到了许多基本概念,求导时间复杂度大O并不难,难的是对数列的一些相关运算,更多是数学知识和能力。果然,书到用时方恨少。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhoujian970

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值