by沈迦南
- 收集、处理和分析数据
戴维·博伊尔是行业领先的唱片公司EMI Music 的高级研究副总裁。他说到:“你很难说服人们采用大数据。就算是优质的数据,如果它没有实质性帮助,不管是因为它的形式无法帮助人们决策,还是因为它没有回答人们想知道的问题,你很难说服人们采用它。但是如果数据很好,而且能够帮助他们,没有人会拒绝它的魅力。”从中我们可以看到,数据并不是在获取之时就能有充分的价值的。真正好的数据不是在于它体量大小,不止在它的质量如何,而是更看他对于当前的问题的解决是否产生了实质性的帮助,这与当前需要解决的问题有脱不了的干系。
一份数据是否能产生实质性的作用,前提是它是否优质,在收集数据的阶段,一个不错的收集技巧是非常重要的。收集高价值的数据,常常需要我们走出办公大楼,与用户们进行面对面的交流。坐在办公大楼里的高枕无忧只会麻痹你对大众真实想法的感知,久而久之会陷入自我满足的泥潭里面,这真的是一种糟糕透顶的情况。在收集数据的时候,需要做大量的访谈笔记,这些访谈笔记是第一手资料,并且时效性高,散发着真理的芳香。但在访谈时也要注意访谈的技巧,一定要力争面对面的访谈,你在访谈的过程中,你不经可以听到访谈者传达的信息,除此之外,你还可以看到他们的神情和一些肢体的动作--这往往更真实地反映访谈者的心理状态,并且在这样的环境中,人的注意力往往会更加集中,也会使得到的回馈质量更高。在选择场所方面也要讲究,需要你选择一个“中立”并且轻松快活的环境,若选择去受访者的办公室,则会让访谈者访谈者感觉这是一次销售宣传。找一家咖啡店或其他休闲场所为佳。避免录音也是一个需要注意的小细节,精益创业运动的领导者之一阿什指出,根据他的个人经验,受访者在录音时会更加拘谨。最后,设计一个脚本吧,这能够在访谈的时候提供一个充足的连贯性,提高访谈的效率。
收集完充足的数据之后,接下来便是处理数据的过程了。数据在收集之初都是凌乱的。需要我们将这些数据成体系地陈列出来。常见的数据处理工具有Excel,tableau,Python等。首先可以将数据做成一个规整的表格,这时候可能会存在一些表格是空值,可以根据临近的数值的平均值来补全。然后,可以将这些数据按照种类做一个划分,比如货币,百分比,人数,能量这些不同单位的值先作一个简单的区分,做一些排列,增删改的操作。进一步,课可以数据做一个可视化的报表,百分比性质的数据可以做成饼状图,货币性质的数据可以做成条形图。也可以根据需要解决的问题做一一些调整。需要观察企业的经营情况的变化就可以构造折线图......
最后,经过一番“取材”和“烹饪”,我们就可以通过分析的方式,从数据当中汲取营养了。这个过程中我们可以根据一些现象进行大胆的猜想,然后通过这些数据去验证我们的猜想。比如说灯光的亮度和一个地区的发展状况的关系,我们可以假想一些数学函数模型,去描述它们之间的关系,甚至可以运用运动学的公式去描述经济学的问题,比如根据e=1/2mv²,可以猜想经济总量去乘以经济发展速率的平方是否可以去描述一个地区的经济发展活力呢?在这个过程中,我们似乎都成了科学家。成功者总能从细微之处总结事物背后的运转规律,伟大的科学家牛顿通过苹果砸在头顶的现象就发现了万有引力就是一个很好的例子。
- 使用数据驱动的方法进行决策
离开了数据的决策,就好像一栋房屋失去了地基,难免陷入到倒塌的境地。虽然一种现实扭曲场确实能让我们感受到充满希望和愉悦,但是切记不要眼高手低。有雄心壮志的英雄和惹人耻笑的小丑有时候只有一念之差。在抬头仰望星空的同时,也要记得低头看路。
决策是我们综合各种信息之后,在深思熟虑之后得出得结果。如果说之前得阶段都在做“几乎无实际用处的准备工作”,那么接下来就到我们去把我们的想法付诸于实践的时候了。我们的注意力是宝贵的,我们需要在当前的环境中找到最时候的关键指标。基于这些关键指标去不断地尝试一些最小可行化地产品,或者利用A/B测试地方法去了解自己的努力对关键指标产生的实际性影响。那么,我们怎么确定关键指标呢?要结合当前的商业模式,以及准确地定位当前自己所处的创业阶段,由此来判定自己需要关注的关键指标。
那么问题又来了,我们一个怎么去衡量自己做的足够好呢,我们应该怎么去找到我们在一些关键指标上所达到要求的底线呢?WP Engine 公司注意到自己的客户流失率是2%,起初公司的人员感到特别的担心。然而,当公司和同行的公司进行对比的过程中,才发现2%的流失率几乎是在同行之中最低的,因此他们的顾虑也打消了,转而去关注其他的指标。在这个案例当中,我们可以注意到,关注同行的数据表现是一个很好的去衡量自己做的是否足够好的办法。但是我们也不应该陷入到数据指标与同行的平均值相差无几的自我满足当中。要明白大多公司失败的原因都是:平均水平远远不够好!我们的数据指标只有在远远超过同行的时候才有成功的可能,毕竟成功的人终究还是少数。换句话说,你不需要做的特别好,只需要比所有人都好就可以了。
用数据去知道决策确实是一种给人安全感的方法,让我们直观的看到各种数据的变化,并且常常根据发生的问题去解决,感觉最终什么问题都不会发生。但是在创业的过程中难免需要想象力和直觉,这是一个人无比强大的能力。陷入到精益数据分析的漩涡当中也是不好的,更多的时候,我们要让自己的直觉和数据分析的方法相结合。
- 避免数据分析陷阱
我们得到的数据真的是准确无误的吗?大部分的时候得到的数据会有一点瑕疵,或者在分析的过程中错选了关键指标,指标不对当前所处的问题又良好的分析作用。
在数学上,局部最大点的定义是函数在给定的邻域内的最大取值。也就是说,局部最大值,并不是你能取到的最大值,只在某一范围内最大。这提示我们一个点,就是我们的数据只能片面得描述事情发展得的整个过程,我们可能只能获取一部分时间的数据,而通过这样的数据,我们得到的“函数值”就会有局限性,就好比我们在一个岛屿的某处看到的最高点并不是这座岛屿真正的最高点。更糟糕的情况是,这些数据还是有瑕疵的,那么我们在使用的过程中不仅不能客观地反映事物的真实状况,并且还有局限性,那真是再糟糕不过的事情。
在利用数据的过程中,想要更好的发挥数据的作用,就要善于发现关键指标。比如说,我们总不能用爬树的能力去衡量一只毛。每个事物都有本身的特点,每一种环境也有一个能最好地反映现状的指标。意识到这一点其实已经很不错了,这样就有足够的时间去找到那个能够反映现状的指标。
- 数据分析方法在生活当中的指导
读完《精益数据分析》之后,我在数据分析的方法上有很多的感悟。很多时候,我们认为的正确并不是真正的正确。我们的认知总是片面的,但是一份优质的数据才能客观的反映事物发展真实状况。有时候,接受自己悲观的处境是一件悲惨的事情,但是在悲惨的处境当中甚至还是保持着那份莫名其妙的自信那就不仅可悲而且可笑了。这个世界并没有我想象地那么美好,在现实当中学会变得理智是人生的必修课。但不断地提醒自己要理智要理智,但是还是在实践当中受到地挫折更加地刻骨铭心。和数据打交道,实际上就是和现实打交道,而那份支撑我们下去的,是我们那份不竭的毅力。我并不是说失败总是好的。如果我们能够通过数据或者其他的方法,能够预测自己的错误,那避免掉这些错误就是再妙不过的事情了。最后,在关注自己的数据的时候,也要学会抬头看一看星空,毕竟总是沉浸在数据的那份死寂一般的悲观当中,对人的信心是受挫的,也是毫无意义的事情,在合适的范围内,尽情去做梦,并刻苦完成梦想吧!