贝叶斯统计前置知识

贝叶斯定理

P ( A ∣ B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B) =\frac{P(B|A) * P(A)}{ P(B)} P(AB)=P(B)P(BA)P(A)
其中, P ( A ∣ B ) P(A|B) P(AB)表示在观测到 B B B的条件下,事件 A A A发生的概率,也被称为后验概率 P ( B ∣ A ) P(B|A) P(BA)表示在事件 A A A发生的条件下,观测到 B B B的概率,也称为似然函数 P ( A ) P(A) P(A)表示事件 A A A先验概率,即在观测到 B B B之前对 A A A的概率进行的估计。 P ( B ) P(B) P(B)表示观测到B的边缘概率

分布密度PDF

  • 分布密度(Probability Density Function,简称PDF),也称概率密度函数,常记为 p ( x ) p(x) p(x)

  • 对于连续型随机变量,概率分布无法通过简单的概率值来描述,因此使用分布密度PDF来表示。

  • 分布密度具有以下特性:

    • 分布密度的值必须是非负的,即在所有取值范围内的函数值都大于等于零。
    • 整个取值范围内的分布密度的积分等于1
  • 下文中提到的分布如无特殊说明,均指的是分布密度

分布函数CDF

  • 分布函数(Cumulative Distribution Function,CDF),也称为累积分布函数。

  • 对于随机变量X,其分布函数 F ( x ) F(x) F(x)定义为: F ( x ) = P ( X ≤ x ) F(x) = P(X ≤ x) F(x)=P(Xx),即,分布函数 F ( x ) F(x) F(x)表示随机变量 X X X小于等于 x x x的概率。

  • 分布函数具有以下特性:

    • F ( x ) F(x) F(x)是一个非递减函数,即对于任意 x 1 x_1 x1 x 2 x_2 x2 ( x 1 ≤ x 2 ) (x1 ≤ x2) x1x2,有 F ( x 1 ) ≤ F ( x 2 ) F(x1) ≤ F(x2) F(x1)F(x2)
    • F ( x ) F(x) F(x)的取值范围在 [ 0 , 1 ] [0, 1] [0,1]之间,即 0 ≤ F ( x ) ≤ 1 0 ≤ F(x) ≤ 1 0F(x)1
    • x x x趋于负无穷时, F ( x ) F(x) F(x)趋近于0;当 x x x趋于正无穷时, F ( x ) F(x) F(x)趋近于 1 1 1

PDF与CDF之间的关系?

  • 简而言之,CDF是PDF的积分,而PDF是CDF的导数。

期望

  • 离散情形: E ( X ) = ∑ i = 1 n x i ⋅ p i E(X) = \sum_{i=1}^n x_i ·p_i E(X)=i=1nxipi
  • 连续情形: E ( X ) = ∫ x x ⋅ p ( x ) d x E(X) = \int_{x} x· p(x)dx E(X)=xxp(x)dx
  • 常用公式
    • E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
    • E ( X Y ) = E ( X ) ∗ E ( Y ) E(XY) = E(X) * E(Y) E(XY)=E(X)E(Y),仅当 X , Y X,Y X,Y相互独立时成立
    • E ( C ) = C E(C)=C E(C)=C C C C为常数
    • E ( k X ) = k E ( X ) E(kX)=kE(X) E(kX)=kE(X) k k k为常数

方差

  • 离散情形: D ( X ) = ∑ i = 1 n ( x i − E ( X ) ) 2 ⋅ p i D(X) = \sum_{i=1}^n (x_i - E(X))^2 · p_i D(X)=i=1n(xiE(X))2pi
  • 连续情形: D ( X ) = ∫ x ( x i − E ( X ) ) 2 ⋅ p ( x ) d x D(X) = \int_x (x_i - E(X))^2 ·p(x)dx D(X)=x(xiE(X))2p(x)dx
  • 常用公式
    • D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y),仅当 X , Y X,Y X,Y相互独立时成立
    • D ( C ) = 0 D(C)=0 D(C)=0 C C C为常数
    • D ( k X ) = k 2 D ( X ) D(kX)=k^2D(X) D(kX)=k2D(X) k k k为常数

贝叶斯相关术语的符号定义

假设有一组独立同分布的样本 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn)是从参数为 θ \theta θ的总体分布 f ( X ∣ θ ) f(X|\theta) f(Xθ)采样而来,而 θ \theta θ又服从参数为 λ \lambda λ的先验分布 π ( θ ) \pi(\theta) π(θ),则有如下的定义:

  • 超参数 λ \lambda λ
  • 先验分布: π ( θ ∣ λ ) \pi(\theta|\lambda) π(θλ),没有超参数时也写做 π ( θ ) \pi(\theta) π(θ)
  • 总体分布: f ( X ∣ θ ) f(X|\theta) f(Xθ)
  • 样本似然: ∏ i = 1 n f ( x i ∣ θ ) \prod_{i=1}^nf(x_i|\theta) i=1nf(xiθ)建立在样本独立同分布的基础之上
  • 参数 θ \theta θ与样本 X X X的联合分布 f ( X , θ ) = π ( θ ) f ( X ∣ θ ) f(X,\theta)=\pi(\theta)f(X|\theta) f(X,θ)=π(θ)f(Xθ)
  • 边缘分布: 通常记为 m ( X ) m(X) m(X),由联合分布对参数 θ \theta θ求积分得到,即 m ( X ) = ∫ θ f ( X , θ ) d θ = ∫ θ f ( X ∣ θ ) π ( θ ) d θ m(X)=\int_{\theta}f(X,\theta)d\theta=\int_{\theta}f(X|\theta)\pi(\theta)d\theta m(X)=θf(X,θ)dθ=θf(Xθ)π(θ)dθ
  • 后验分布: 通常记为 π ( θ ∣ X ) \pi(\theta|X) π(θX),表示经过样本信息修正过后的参数分布 π ( θ ∣ X ) = f ( X , θ ) m ( X ) = π ( θ ) f ( X ∣ θ ) ∫ θ f ( X ∣ θ ) π ( θ ) d θ \pi(\theta|X)=\frac{f(X,\theta)}{m(X)}=\frac{\pi(\theta)f(X|\theta)}{\int_{\theta}f(X|\theta)\pi(\theta)d\theta} π(θX)=m(X)f(X,θ)=θf(Xθ)π(θ)dθπ(θ)f(Xθ)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值