在OpenCV中,图像增强和图像去噪是常见的图像处理任务,用于改进图像质量和增强图像特征。下面是一些常用的图像增强和图像去噪技术:



-
图像增强:
a. 直方图均衡化(Histogram Equalization):通过重新分布图像像素的灰度级来增强图像的对比度。
b. 自适应直方图均衡化(Adaptive Histogram Equalization):将图像分成小块,对每个块进行直方图均衡化,以避免过度增强细节。
c. 伽马校正(Gamma Correction):通过对图像进行幂次变换来调整图像的亮度。
d. 锐化(Sharpening):使用滤波器(如拉普拉斯滤波器)增强图像的边缘和细节。
e. 傅里叶变换(Fourier Transform):在频域进行图像增强,通常用于去除周期性噪声。
-
图像去噪:
a. 均值滤波

本文介绍了OpenCV中图像增强和去噪的常用技术,包括直方图均衡化、自适应直方图均衡化、伽马校正、锐化、傅里叶变换等增强方法,以及均值滤波、高斯滤波、中值滤波、双边滤波和降噪自编码器等去噪技术。理解这些方法及其参数选择对于提升图像处理质量至关重要。
最低0.47元/天 解锁文章
4184

被折叠的 条评论
为什么被折叠?



