动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
Sample Output
3
思路:
每种动物没有告知物种所以每个动物有三种可能
每两种动物都对应三种关系
当他们为同类时 那他们不会是捕食或者被捕食关系
当他们是捕食关系时 他们就不会是同类或者被捕食
A吃B b吃c c吃a
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int pre[55555];//记录当前节点与其父节点关系的数组
int lvl[55555]; //记录其处于食物链中吃与被吃关系(0,1,2)的数组
int i, j, n, k;
void ini()
{
memset(lvl, 0, sizeof(lvl));
for(i = 0; i <= n; i++)
pre[i]=i;
}
int Find(int z)
int res;
if(z == pre[z]) return pre[z];//一定要先找其祖先节点再赋值,不然会造成当前节点的父节点的lvl[]出错
res = Find(pre[z]);
lvl[z]=(lvl[z] + lvl[pre[z]])%3;//确定父子关系
return pre[z] = res;
}
int Union(int type, int x,int y) //合并
{
int xx, yy;
xx = Find(x);
yy = Find(y);
if(xx == yy)//type = 1 时xx != yy 则此话为假。
//type = 2 时 xx = yy (即x,y是同类,或y吃x则此话为假。
{
if((lvl[x]-lvl[y]+3)%3 == type-1) return 0;
else return 1;
}
pre[xx] = yy;//y所在集合的根节点的father设置成x所在集合的根节点
lvl[xx] = (type-lvl[x]+lvl[y]+2)%3;
return 0;
}
int main()
{
int type, x1, x2, lie; //type 表示每一组数据的类型,同类还是被吃
scanf("%d%d",&n, &k);
ini();
lie = 0;
for(i = 0; i < k; i++)
{
scanf("%d%d%d", &type, &x1, &x2);
if(x1==x2 && type==2) //自己不可能吃自己,假话
lie++;
else if(x1>n || x2>n) //物种编号不可能比总物种数大,假话
lie++;
else //x与y不在同一集合,先合并,再通过Union函数里的一个判断的返回值判定其是否为假话
lie += Union(type, x1, x2);
}
printf("%d\n", lie);
return 0;
}