100 可以表示为带分数的形式:100 = 3 + 69258 / 714
还可以表示为:100 = 82 + 3546 / 197
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
题目要求:
从标准输入读入一个正整数N (N<1000*1000)
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
例如:
用户输入:
100
程序输出:
11
再例如:
用户输入:
105
程序输出:
6
资源约定:
峰值内存消耗 < 64M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
思路:首先将1~9的数字全排列,将每一种全排列分成不为0的三部分进行运算,判断是否与n相等,记录总数。
AC代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
int n,sum=0;
int main()
{
scanf("%d",&n);
int s[10]={1,2,3,4,5,6,7,8,9};
do
{
int a=0;
for(int i=0;i<7;i++)
{
a=a*10+s[i];
int b=0;
for(int j=i+1;j<8;j++)
{
b=b*10+s[j];
int c=0;
for(int k=j+1;k<9;k++)
c=c*10+s[k];
if(b%c==0)
{
if(a+b/c==n)
{
sum++;
}
}
}
}
}while(next_permutation(s,s+9));
printf("%d\n",sum);
}