Scalable Zero-shot Entity Linking with Dense Entity Retrieval

Abstract
we introduce: a conceptually simple,scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off.
 We present:a two-stage zero-shot linking algorithm, where each entity is defined only by
a short textual description.
details:he first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions.Each candidate is then re-ranked with a crossencoder, that concatenates the mention and entity text.
Introduction
problem: Scale is a key challenge for entity linking; there are millions of possible entities to consider for each mention.
previous works: manually curated mention tables;Wikipedia link popularity gold Wikipedia entity categories
our work: BERT-based models for large scale entity linking when used in a zero
shot setup, where there is no external knowledge and a short text description provides the only information we have for each entity.present an extensive evaluation of the accuracy-speed tradeoff inherent to large pre-trained models.
details: we introduce a two stage ap proach for zero-shot linking (see Figure 1 for an overview), based on fifine-tuned BERT architectures . In the fifirst stage, we do re trieval in a dense space defifined by a bi-encoder that independently embeds the mention context and the entitydescriptions . Each retrieved candidate is then ex amined more carefully with a cross-encoder that concatenates the mention and entity text, follow ing Logeswaran et al. ( 2019 ). This overall approach is conceptually simple but highly effective, as we show through detailed experiments.

Related Work 略

Defifinition and Task Formulation 略
Methodology details 略
The biencoder uses two independent BERT transformers to encode model context/mention and entity into dense vectors, and each entity candidate is scored as the dot product of these vectors. The candi dates retrieved by the bi-encoder are then passed to the cross-encoder for ranking. The cross-encoder encodes context/mention and entity in one trans former, and applies an additional linear layer to compute the fifinal score for each pair.
后面都略了 我去看代码了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值