/*标题:带分数
100 可以表示为带分数的形式:100 = 3 + 69258 / 714
还可以表示为:100 = 82 + 3546 / 197
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
题目要求:
从标准输入读入一个正整数N (N<1000*1000)
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
例如:
用户输入:
100
程序输出:
11
再例如:
用户输入:
105
程序输出:
6
资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗 < 3000ms*/
以下代码只算出一些具体结果,不进行统计,相信以大家的能力统计没问题的:
比较传统的方法(速度比较慢):
#include"stdio.h"
#include"stdlib.h"
#include"math.h"
long int a[10];
int xiangtong()
{for(int i=0;i<10&&a[i]!=-1;i++)
for(int j=0;j<10;j++)
if(i!=j&&a[i]==a[j]&&a[i]!=-1)
return 1;
return 0;}
int print()
{for(int i=0;i<10;i++)
printf("%d ",a[i]);
printf("\n");
return 1; }
int youling(int i)
{for(int j=0;j<=i;j++)
if(a[j]==0)
return 1;
return 0;
}
int main()
{long int k,kk,N,x;
for(int i=0;i<10;i++)
a[i]=-1;
scanf("%ld",&N);
for(int x=1;x<N;x++)
{for(int i=0;i<10;i++)
a[i]=-1;
long int temp=x;
int i=0;
while(temp>0)
{a[i++]=temp%10;
temp=temp/10;
}
int temp0=i;
if(xiangtong()||youling(i)) continue;
long int y=N-x;
for(kk=1;kk<98766;kk++)
{i=temp0;
temp=kk;
for(int w=i;w<10;w++)
a[w]=-1;
while(temp>0)
{a[i++]=temp%10;
temp=temp/10;
}//end while
//if(kk==98765)
//print();
if(i>9) break;
//printf("i=%d:\n",i);
if(xiangtong()||youling(i)) continue;
k=y*kk;
temp=k;
//被除数的计算
while(temp>0)
{a[i++]=temp%10;
temp=temp/10;
}//end while
if(i>9) continue;
//printf("i=%d\n",i);
//if(i==10) printf("%ld+%ld/%ld=%ld\n",x,k,kk,N);
if(!xiangtong()&&!youling(10)&&i==9)
printf("%ld+%ld/%ld=%ld\n",x,k,kk,N);
}//end for kk
}//end x
system("pause");}
优化较大的算法,因为先排序,在判断,所以总的时间都差不多,与输入N的关系较小(速度较快,3s以内):
#include"stdio.h"
#include"stdlib.h"
long int a[9];//存储每个数字
long int num=0;//计数总的方式
int xiangtong(int star,int nowdeep)
{for(int i=star;i<=nowdeep;i++)
for(int j=star;j<=nowdeep;j++)
if(i!=j&&a[i]==a[j]&&a[i]!=-1)
return 1;
return 0;
}
//x,y是加数
int pailie(long int N)
{ long int x,y,temp1,temp2;
for(int i=0;i<=7;i++)//0到7层依次排序
{int k=0;
x=0;
for(k=0;k<=i;k++)
x=x*10+a[k];
if(x>=N) break;
y=N-x;
//printf("k=%d i-k=%d 8-i+1=%d\n",k,i-k+2,8-i+1);
for(int cur=i+1;cur<=7;cur++)
{ if(cur-i<8-cur) continue;//如果temp1的位数小于temp2的位数,跳过循环
//printf("%d %d\n",cur-i,8-cur);验证位数比较是否正确
temp1=temp2=0;
for(int j=k;j<=cur;j++)
temp1=temp1*10+a[j];
for(int j=cur+1;j<=8;j++)
temp2=temp2*10+a[j];
//printf("%ld+%ld/%ld%=%ld\n",x,temp1,temp2,x+y);
if(temp1/temp2>y) break;
if(temp1%temp2==0&&(temp1/temp2==y)&&!xiangtong(0,8))
printf("%ld+%ld/%ld%=%ld\n",x,temp1,temp2,x+y);
//print();
}//end for cur
}//end for i
return 1;}
//N是输入的整数,i是当前存在的一个加数,nowdeepshi现在的深度,deep是总的调用应有的深度
//这里采用先排列好,然后再用的方法
int daifenshu(long int N,int nowdeep,int deep)
{ if(xiangtong(0,nowdeep-1))
{ //print();
return 1;}
if(nowdeep==deep+1)
{ if(!xiangtong(0,deep))
pailie(N);
//print();
return 1;
}
for(int j=1;j<=9;j++)
{a[nowdeep]=j;
if(a[0]>=N) break;
daifenshu(N,nowdeep+1,deep);
}
return 1;
}
int main()
{ long int N;
scanf("%ld",&N);
daifenshu(N,0,8);
system("pause");}
方法三:(速度最慢,因为调用的排序次数很多,N越大速度越慢):
#include"stdio.h"
#include"stdlib.h"
long int a[9];//存储每个数字
long int num=0;//计数总的方式
int xiangtong(int star,int nowdeep)
{for(int i=star;i<=nowdeep;i++)
for(int j=star;j<=nowdeep;j++)
if(i!=j&&a[i]==a[j]&&a[i]!=-1)
return 1;
return 0;
}
//y是另外一个加数的值
int pailie(int k,long int y,long int x)
{ for(int i=0;i<k;i++)
{
if(i<(k-i-1)) continue;
long int temp1=0,temp2=0;
for(int j=0;j<=i;j++)
temp1=temp1*10+a[j];
for(int j=i+1;j<=k;j++)
temp2=temp2*10+a[j];
//printf("%ld+%ld/%ld%=%ld\n",x,temp1,temp2,x+y);
if(temp1/temp2>y) break;
if(temp1%temp2==0&&(temp1/temp2==y)&&!xiangtong(0,8))
printf("%ld+%ld/%ld%=%ld\n",x,temp1,temp2,x+y);
//print();
}//end for i
return 1;}
//N是输入的整数,i是当前存在的一个加数,nowdeepshi现在的深度,deep是总的调用应有的深度
int daifenshu(long int N,long int i,int nowdeep,int deep)
{if(xiangtong(0,nowdeep-1)) return 1;
if(nowdeep==deep+1)
{if(!xiangtong(0,deep))
pailie(deep,N-i,i);
//print();
return 1;
}
for(int j=1;j<=9;j++)
{a[nowdeep]=j;
daifenshu(N,i,nowdeep+1,deep);
}
return 1;
}
int main()
{ long int N;
scanf("%ld",&N);
for(long int i=1;i<N-1;i++)
{ for(int j=0;j<9;j++)
a[j]=-1;//初始化
int temp=8;//temp用来保存位数
long int k=i;//将每一位存入a中
while(k>0)
{a[temp--]=k%10;
k=k/10;
}
//chufa(temp,N-i,N);
if(xiangtong(i+1,8))
continue;
int key=0;
for(int k=temp+1;k<9;k++)
if(a[k]==0){ key=1; break;}
if(key) continue;
daifenshu(N,i,0,temp);
}//end for i;
system("pause");}