进阶岛-第2关-【Lagent 自定义你的 Agent 智能体】

1. 基础任务

  • 使用 Lagent 自定义一个智能体,并使用 Lagent Web Demo 成功部署与调用,记录复现过程并截图。

2. 任务步骤

2.1 Lagent是什么?

  • Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。
  • Lagent 目前已经支持了包括 AutoGPT、ReAct 等在内的多个经典智能体范式,也支持了如下工具:
    • Arxiv 搜索
    • Bing 地图
    • Google 学术搜索
    • Google 搜索
    • 交互式 IPython 解释器
    • IPython 解释器
    • PPT
    • Python 解释器
  • 支持多种 LLM 推理后端 :
    • OpenAI API
    • Transformers
    • LMDeploy
    • VLLM
  • 预定义的多种工具:
    • 计算器
    • 搜索引擎(Bing,Google,等)
  • 其基本结构如下所示:
    在这里插入图片描述

2.2 创建开发机

  • 进入开发机控制台控制台
  • 开发机类型选择"个人开发机"
  • 开发机名称"agent_camp3"
  • 镜像选择"Cuda12.2-conda"
  • 资源配置选择"30% A100 * 1"
  • 然后立即创建
    在这里插入图片描述

2.3 为 Lagent 配置一个可用的环境

  • 新建虚拟环境"agent_camp3",大概需要3分钟
  • 激活环境"agent_camp3"
  • 安装 torch,大概需要6分钟
  • 安装其他依赖包
# 创建环境
conda create -n agent_camp3 python=3.10 -y
# 激活环境
conda activate agent_camp3
# 安装 torch
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖包
pip install termcolor==2.4.0
pip install lmdeploy==0.5.2
  • 接下来,我们通过源码安装的方式安装 lagent
# 创建目录以存放代码
mkdir -p /root/agent_camp3
cd /root/agent_camp3
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout 81e7ace && pip install -e . && cd ..
pip install griffe==0.48.0

2.4 Lagent Web Demo 使用

  • 首先,我们先使用 LMDeploy 部署 InternLM2.5-7B-Chat,并启动一个 API Server。
conda activate agent_camp3
lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat --model-name internlm2_5-7b-chat

在这里插入图片描述

  • 然后,我们在另一个窗口中启动 Lagent 的 Web Demo。
cd /root/agent_camp3/lagent
conda activate agent_camp3
streamlit run examples/internlm2_agent_web_demo.py

在这里插入图片描述

  • 这里我采用的是本地vscode连接的ssh,端口自动映射,直接打开http://localhost:8501/即可
  • 修改模型名称一栏为 “internlm2_5-7b-chat”,按下回车以确认
  • 修改模型 ip一栏为"127.0.0.1:23333",按下回车以确认
  • 插件选择一栏选择 “ArxivSearch”
  • 在输入框输入"帮我搜索一下 MindSearch 论文"
    在这里插入图片描述
  • 同时我们观察两个终端:
  • 终端一(API server):
    在这里插入图片描述
  • 终端二( Lagent 的 Web端):
    在这里插入图片描述

2.5 基于 Lagent 自定义智能体

  • 实现一个调用 MagicMaker API 以完成文生图的功能
  • 首先,我们先来创建工具文件:
cd /root/agent_camp3/lagent
touch lagent/actions/magicmaker.py
  • 然后,我们将下面的代码复制进入 /root/agent_camp3/lagent/lagent/actions/magicmaker.py
import json
import requests

from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode


class MagicMaker(BaseAction):
    styles_option = [
        'dongman',  # 动漫
        'guofeng',  # 国风
        'xieshi',   # 写实
        'youhua',   # 油画
        'manghe',   # 盲盒
    ]
    aspect_ratio_options = [
        '16:9', '4:3', '3:2', '1:1',
        '2:3', '3:4', '9:16'
    ]

    def __init__(self,
                 style='guofeng',
                 aspect_ratio='4:3'):
        super().__init__()
        if style in self.styles_option:
            self.style = style
        else:
            raise ValueError(f'The style must be one of {self.styles_option}')
        
        if aspect_ratio in self.aspect_ratio_options:
            self.aspect_ratio = aspect_ratio
        else:
            raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')
    
    @tool_api
    def generate_image(self, keywords: str) -> dict:
        """Run magicmaker and get the generated image according to the keywords.

        Args:
            keywords (:class:`str`): the keywords to generate image

        Returns:
            :class:`dict`: the generated image
                * image (str): path to the generated image
        """
        try:
            response = requests.post(
                url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',
                data=json.dumps({
                    "official": True,
                    "prompt": keywords,
                    "style": self.style,
                    "poseT": False,
                    "aspectRatio": self.aspect_ratio
                }),
                headers={'content-type': 'application/json'}
            )
        except Exception as exc:
            return ActionReturn(
                errmsg=f'MagicMaker exception: {exc}',
                state=ActionStatusCode.HTTP_ERROR)
        image_url = response.json()['data']['imgUrl']
        return {'image': image_url}
  • 最后,我们修改 /root/agent_camp3/lagent/examples/internlm2_agent_web_demo.py 来适配我们的自定义工具。
    • 在 from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter 的下一行添加 from lagent.actions.magicmaker import MagicMaker
    • 在第27行添加 MagicMaker()。
from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter
+ from lagent.actions.magicmaker import MagicMaker
from lagent.agents.internlm2_agent import INTERPRETER_CN, META_CN, PLUGIN_CN, Internlm2Agent, Internlm2Protocol
...
        action_list = [
            ArxivSearch(),
+             MagicMaker(),
        ]

在这里插入图片描述

  • 接下来,启动 Web Demo 来体验一下吧!我们同时启用两个工具,然后输入“请帮我生成一幅孙悟空大战二郎神的图”
    在这里插入图片描述

  • 然后,我们再试一下“帮我搜索一下 MindSearch 论文”。
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值