基于核化相关滤波器的跟踪-效果直逼Struck和TLD跟踪器

原文:http://cvlab.hanyang.ac.kr/tracker_benchmark_v10.html

作者ECCV2012的文章就被我关注过,速度惊人的快。2015年新作出来了。发文以供同行参阅。

Kernelized Correlation Filters

João F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista

ECCV 2012, TPAMI 2015


Results
Qualitative comparison of the proposed KCF tracker with other state-of-the-art trackers, TLD and Struck, on a benchmark of 50 videos. The proposed method is much faster and admits a considerably simpler implementation.


The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches.

Such sets of samples are riddled with redundancies — any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches.

By showing that the resulting data matrix is circulant, we can diagonalize it with the Discrete Fourier Transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new Kernelized Correlation Filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call Dual Correlation Filter (DCF).

Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code. To encourage further developments, our tracking framework was made open-source.


Video. You can view an example video on YouTube here. It is for the ECCV'12 version of the tracker, which only supported a single channel. In the precision plot below, it corresponds to the "KCF on raw pixels" curve. The new version ("KCF/DCF on HOG") is significantly improved.

Source code. Below you can download the Matlab code (both the ECCV'12 and the new version), the Python port byRodrigo Benenson, and the Java port by Peter Abeles (as part of theBoofCV library).


Precision plot
Precision at different thresholds for 4 variants of the proposed method (in bold) on a 50 videos benchmark.


High-Speed Tracking with Kernelized Correlation Filters
J. F. Henriques, R. Caseiro, P. Martins, J. Batista
TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015

Paper ( PDF)
Preprint on arXiv (2014)
Code version 2 ( Matlab)
Reference ( Bibtex)

Exploiting the Circulant Structure of Tracking-by-detection with Kernels
J. F. Henriques, R. Caseiro, P. Martins, J. Batista
ECCV - European Conference on Computer Vision, 2012

Paper ( PDF)
Code version 1 ( Matlab)
Code ( Python)
Code ( Java / doc)
Poster ( PDF)
Supplement ( PDF)
More properties ( PDF)
Reference ( Bibtex)


评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小新识图

你的鼓励是我最大的分享动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值