facefusion服务化改造

本文介绍了将facefusion服务化改造的过程,包括分析facefusion的使用方式,发现其前端使用了gradio库,不适合直接作为服务接口。通过研究源码,了解到算法执行逻辑,并决定使用FastAPI构建HTTP接口。详细描述了改造步骤,包括复制并修改核心函数,处理用户上传的图片,将其保存到临时文件夹,并调用facefusion进行处理。提供了改造后的代码仓库链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

facefusion服务化改造

代码: https://gitee.com/hzlxf/facefusion-http-api

facefusion有两种使用方式,一种是官方文档上面写的,安装好后直接运行 python run.py​,这会提供一个web的交互界面,相当友好。另一种是在这基础上,添加 --headless​的参数,同时,指定如source, input, output等其它一大堆参数,命令行运行。参数表可以 --help​ 显示,也可以阅读 facefusion/core.py中的cli()​函数查阅。

在这里插入图片描述

但是如果我们要把它作为我们的服务,对外提供接口,就都不太合适了。首先headless的方式是肯定不行的,每次运行都要加载模型,多耗时啊。

而web的方式呢?通过F12查看其接口,发现其请求体、接口十分不规则,不符合常见的http接口的形式,很难推断出接口参数是什么。(除了upload,就全TM是/run/predict这个接口)

在这里插入图片描述

针对性的研究facefusion关于代码逻辑后发现,这是由于facefusion的前端并不是通过常见的前端框架开发的,而是通过一个叫gradio的库。这个库是专门给研究员们进行算法可视化,展示demo用的。(看了一下文档,还确实挺方便的,前后端都不用写,声明一下就行了。专属算法人员的“低代码”框架无疑了)

不得已,简单的研究一下源码,看它是怎么调用算法的,然后我们自己用fastapi手撸一个服务接口得了。

首先还是在入口函数,facefusion/core.py这里。cli()​这个函数是命令行的入口。在这里定义了所有的参数,也设了默认值。

def cli() -> None:
	signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
	program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 130), add_help = False)
	# general
	program.add_argument('-s', '--source', help = wording.get('help.source'), action = 'append', dest = 'source_paths', default = config.get_str_list('general.source_paths'))
	program.add_argument('-t', '--target', help = wording.get('help.target'), dest = 'target_path', default = config.get_str_value('general.target_path'))
	program.add_argument('-o', '--output', help = wording.get('help.output'), dest = 'output_path', default = config.get_str_value('general.output_path'))
	program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')

	# 省略若干行

	run(program)

最后一个run的函数,就是执行算法的真正入口了。跟踪进去看看。

def run(program : ArgumentParser) -> None:
	apply_args(program)
	logger.init(facefusion.globals.log_level)
	if facefusion.globals.system_memory_limit > 0:
		limit_system_memory(facefusion.globals.system_memory_limit)
	if not pre_check() or not content_analyser.pre_check() or not face_analyser.pre_check() or not face_masker.pre_check():
		return
	
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值