【DP】Sam数

这是一篇关于计算k阶Sam数数量的博客。Sam数定义为相邻两位数字之差不超过2,博主通过动态规划(DP)的方法解决这个问题,使用a[i][j]来表示第i位数为j的状态,并考虑模1000000007的运算。博客提供了输入输出样例以及数据规模的约定,并提到在特定数据范围内k的最大值。
摘要由CSDN通过智能技术生成

题目描述

小G最近发现了一种非常有趣的数,他将这种数称之为Sam数。Sam数具有以下特征:相邻两位的数字之差不超过2。小G还将Sam数按位数进行了分类,他将一个k位Sam数称之为k阶Sam数。但不幸的是小G发现他数不清第k阶的Sam数一共有多少个,这个时候机智的他想到了向你求助。

输入

第一行为一个整数k,含义见题面。
输出

一行一个整数ans,表示k阶的Sam数的个数。
由于第k阶Sam数非常多,你只需要输出ans mod 1,000,000,007。
输入样例复制


输出样例复制

867
说明

【数据规模和约定】
对于30%的数据,1 ≤ k ≤ 6。
对于60%的数据,1 ≤ k ≤ 1000。
对于100%的数据,1 ≤ k ≤ 1000000。

思路:这是一道裸DP,用a[i][j]表示第i位j的情况,再看旁边的数,最后模1000000007,然后还有1的情况要“特判”一下

代码:

#include<iostream>
#include<cstdio>
using namespace std;
long long cwh=1000000007,k,ans,a[10000000][15];//用cwh表示1000000007,方便一点
int main()
{
   
   scanf("%d",&k);
   if(k==1){
   //特判
   printf("10");
   return 0;}
   a[1][0]=a[1][1]=a[1][2]=a[1][3]=a[1][4]=a[1][5]=a[1][6]=a[1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值