一、遍历树结构
1. 树结构介绍
JS中树结构一般是类似于这样的结构:
let tree = [
{
id: '1',
title: '节点1',
children: [
{
id: '1-1',
title: '节点1-1'
},
{
id: '1-2',
title: '节点1-2'
}
]
},
{
id: '2',
title: '节点2',
children: [
{
id: '2-1',
title: '节点2-1'
}
]
}
]
为了更通用,可以用存储了树根节点的列表表示一个树形结构,每个节点的children属性(如果有)是一颗子树,如果没有children属性或者children长度为0,则表示该节点为叶子节点。
2. 树结构遍历方法介绍
树结构的常用场景之一就是遍历,而遍历又分为广度优先遍历、深度优先遍历。其中深度优先遍历是可递归的,而广度优先遍历是非递归的,通常用循环来实现。深度优先遍历又分为先序遍历、后序遍历,二叉树还有中序遍历,实现方法可以是递归,也可以是循环。
JS遍历树结构
广度优先和深度优先的概念很简单,区别如下:
- 深度优先,访问完一颗子树再去访问后面的子树,而访问子树的时候,先访问根再访问根的子树,称为先序遍历;先访问子树再访问根,称为后序遍历。
- 广度优先,即访问树结构的第n+1层前必须先访问完第n层
3. 广度优先遍历的实现
广度优先的思路是,维护一个队列,队列的初始值为树结构根节点组成的列表,重复执行以下步骤直到队列为空:
- 取出队列中的第一个元素,进行访问相关操作,然后将其后代元素(如果有)全部追加到队列最后。
下面是代码实现,类似于数组的forEach遍历,我们将数组的访问操作交给调用者自定义,即一个回调函数:
// 广度优先
function treeForeach (tree, fu