Caffe实战
文章平均质量分 64
hunterlew
这个作者很懒,什么都没留下…
展开
-
基于Ubuntu的无GPU的Caffe配置
假期较早回校,有点时间折腾搞一下caffe,据说是CNN应用一个很好的库。之前看过类似的配置教程,感觉特费劲。偶然,昨晚稍微维护了一下实验室服务器,顺便给自己腾了4核、8G内存的虚拟机玩玩,参考配置教程走了一遍,结果一天就搞定了,比我想象中快呀。下面就把我碰到的过程记录下来,有些错误可能没碰到。 由于大多数教程都是Ubuntu14.04的,我的虚拟机也安装了这个版本,可能碰到的问题原创 2016-07-29 22:27:43 · 2720 阅读 · 2 评论 -
caffe在win10下的配置
由于某些原因,需要在windows下配置caffe,基本上是按照caffe的windows分支的readme上写的安装的。大致说一下流程:https://github.com/BVLC/caffe/tree/windows1、 安装准备VS2015,python3.5,matlab2017a,cuda8和cudnn。注意python版本不能是3.6,目前仅支持到3.5。我在安装的时候是原创 2017-11-09 08:36:48 · 3280 阅读 · 0 评论 -
Caffe SSD 配置与安装
为了跟进目标检测框架的最新进展,于是配置了SSD框架并成功运行demo,其中遇到不少坑记录下来。1、假设CUDA、CuDNN、OpenBLAS、OpenCV等都已经安装完毕。我的版本是Ubuntu16.04+CUDA8.0+CuDNN5.0+OpenCV3.0。之前已成功配置过caffe-master。2、下载caffe-ssdgit clone gitclonehttps原创 2017-06-23 14:18:06 · 10863 阅读 · 4 评论 -
caffe实战之classify.py解析
本文将对caffe/python下的classify.py代码以及相关的classifier.py和io.py进行解析。一、classify.py由最后的if __name__ == '__main__': main(sys.argv)代表该文件在命令行下运行,则运行main函数,参数存放在sys.argv中。在main函数定义中,分别判断并存入各类参数,分别如下:input_file原创 2017-05-31 11:12:32 · 6540 阅读 · 0 评论 -
caffe实战之训练并测试自己的数据
训练之前,确认caffe已经编译成功。本文以mstar数据库为例,介绍如何在caffe平台上训练卷及神经网络模型并进行测试。一、准备数据这个步骤是最繁琐,也最容易出错的一步,任何差池都会导致最终训练效果不如人意,建议多花时间检查这部分,确保数据集的质量。1、在data文件夹下新建文件夹mstar,并进入该目录,分别简历train和val文件夹。2、在train和val文件夹下分原创 2017-05-23 22:39:51 · 3485 阅读 · 0 评论 -
ubuntu+cuda8.0+opencv3 Caffe GPU环境配置
最近临近中期答辩,在总结一些以前碰到过的坑,以便后人乘凉。回顾了一下去年配置caffe的完整流程,去年双11买的神舟z7m电脑,性价比很高,显卡是GTX965m的,查了计算能力达5.2,刚买回来后就开始捣腾caffe环境下的配置。当时配置过程一波三折,主要卡在显卡驱动这一环节,因为Ubuntu对Nvidia显卡驱动的支持似乎不是很好。下面给出完整的配置流程。 一、 安装Ubuntu系统原创 2017-05-22 16:46:48 · 2770 阅读 · 1 评论