数据分析工作到底在做什么

       今天是2018年10月28日,仔细一算,已经工作两年多了,从16年7月毕业到现在一直都在做数据分析工作,总结一下这两年的工作历程和对数据分析工作的一些看法。

       目前已经是就职的第三家公司了,某外卖公司城市分公司---某快递公司--某体育社区公司,(由于互联网环境变化快,所以有时候换工作真的很无奈),就我个人感受,所对应的工作情况是大公司小团队---大公司大团队---小公司小团队。

        对于数据分析这个工作我们先看下招聘要求都会怎么写,以上海的1-3年本科要求的岗位为例:

 

 

 

一、工作历程

      1、某外卖的工作应该是业务分析,主要工作:

                          日常数据报表报告制作,基本操作就是数据平台直接取数据,然后加工,写简单分析,形式表格、PPT  

                          销售部门KPI制定,监控,最后计算总结

                          线上活动部门的数据输出,就是活动部门需要的数据提取,然后看活动效果,基本就是对比分析下

           主要工具:impala、html+hive、Excel、pp,tableau

           主要收获:业务逻辑怎么理解,怎么和业务沟通,优秀的数据平台是什么样子

       2 、某快递公司做后台数据处理比较多,主要工作:

                        后台数据清洗,做的是ETL的工作,就是写大段的hive清洗出一个业务逻辑

                        数据产品对接,主要是报表上线,报表的形式和生产逻辑文档化,和业务方沟通

                        简单数据提取,数据预测项目

            主要工具:hive,dataX,Azkaban,Python,少量shell,Excel,ppt,tableau,帆软,presto

            主要收获:真正接触到数据后台,了解数仓构建流程,知道了大数据工作都是在做什么,主要技术都用在哪里

       3、某体育社区公司目前仍在做数据清洗工作,刚入职不久,后期再总结吧

二、岗位JD要求

         office软件,SQL(hive),数据分析能力,产品和研发的对接沟通这几项是普遍会要求的,理工科背景优先。

         现在很多公司都会用spark,会Mllib比较加分(当然还是大公司用的多)

三、 个人看法

         从实际工作来说,如果你的工作汇报对象是业务方,做的其实更多的是数据运营的工作,也就是你用到的是比较完整的数据,数据的口径和生产逻辑都不需要注意,所做的工作和业务高度相关,比如解释业务波动情况,业务策略调整了做数据测算,做报表,写分析报告等。如果工作汇报对象是技术部门,工作可能包括后台数据逻辑开发,跟进数据产品类工作,公司整体业务动态把控等。一般来说数据分析师汇报对象是业务方的比较多。

         从大数据和技术范畴来讲,我觉得数据分析不算是很技术的工作,而且工资很容易到上限且平均水平略低于开发(大厂另说),这是一个易通不易精的工作。数据分析能力不是一个很好量化的东西(可能我没见过大牛,理解不到具体是什么样子),可能就像武侠里面的修心的过程,普通人很难到这个境界。

         数据分析工作主要困境:分析不出什么东西,大多数时候对于一个成熟的商业模式,分析的维度和场景就那么多,都是描述性的统计分析,也不是每次都能给出建设性的意见,且能够实行下去,大多数时候会让人没有成就感。

四、提升空间

      基本工具类,excel,ppt,tableau都熟练应用

      数据库类,这个看具体工作,有的会用到mysql,Oracle之类的生产库,有必要学习一下存取过程,主键等基础知识,如果是使用数仓有必要学习下HIVE基础操作及数据仓库的知识

      机器学习算法类,这个也要看具体工作内容

五、数据分析和数据挖掘、机器学习的关系

       这两个职位在实际的工作中做的完全是不同的工作。数据挖掘类工作一般都和线上的项目的高度相关,一般是有C端用户的应用较多,工作以算法构建和逻辑处理相关(个人了解后瞎猜的),数据分析是简单处理数据后数据体现业务的过程。从这个角度来说从数据分析转到数据挖掘还是有一定难度的,看几个机器学习的视频就能转到机器学习对普通人来说不太可能,做数据分析大多数是数学和统计专业的,没有web编程的经验,机器学习算法学通学透还是难度较大的。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页