互补滤波器


目录(?) [+]
  1. 互补滤波器
    1. 介绍
    2. 原理
      1. 低通滤波器
        1. 一阶低通滤波器
        2. 二阶低通滤波
      2. 高通滤波器
      3. 互补滤波器
    3. the end

互补滤波器

从 RC 电路 到 数字滤波器 。

参考:wikiPedia

by luoshi006
欢迎交流~ 个人 Gitter 交流平台,点击直达: Join the chat at https://gitter.im/luoshi006_communication/Lobby

介绍

原理

低通滤波器

一阶低通滤波器

传递函数

这里写图片描述

常见的 RC 电路构成的一阶低通滤波器的输入(U) 输出(Y)关系如下:

YU =11+RCS  

其中,滤波器的截止频率为: w c =1RC  

将传函转换为微分形式:

y(t)+RCdy(t)dt =x(t) 

dy(t)dt ==y(k)y(k1)Δt   ,代入得到差分形式:

y(k)=RCΔt+RC y(k1)+ΔtΔt+RC x(k) 

由近似公式:

11+Δt/RC = ˙ 1ΔtRC  

可得:

y(k)=(1ΔtRC )y(k1)+ΔtRC x(k) 

即,一阶低通滤波的差分形式。


二阶低通滤波

这里写图片描述

过程略;

y(k)=2(1+σΔt)1+2σΔt+ω 2 0 Δt 2  y(k1)11+2σΔt+ω 2 0 Δt 2  y(k2)+ω 2 0 Δt 2 1+2σΔt+ω 2 0 Δt 2  x(k) 

其中, σ=R2L ,ω 2 0 =1LC  


高通滤波器

依然使用RC电路为模型。
传递函数为:

G(s)=11+1RCS   

=RCSRCS+1  

******************* 内容仅作参考 *******************************
由 $s=\frac {Z-1}{T}$变换:

$$U\cdot RC \cdot Z - U\cdot RC=Y\cdot RC \cdot Z- Y\cdot RC+Y\cdot T$$

Z反变换:

$$Y(k+1)=U(k+1)-U(k)+(1-\frac{T}{RC}) Y(k)$$
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

将传函转化为微分形式:

RCdy(t)dt +y(t)=RCdx(t)dt  

转换为差分形式:

y(k)=RCRC+T y(k1)+RCRC+T (x(k)x(k1)) 


互补滤波器

综上,可知:
低通滤波器:

y(k)=RCRC+T y(k1)+TRC+T x(k) 

高通滤波器:

y(k)=RCRC+T [y(k1)+Δx(k)] 

故,互补滤波器:

y(k)=RCRC+T [y(k1)+Δx gyro (k)]+TT+RC x acc (k) 

angle = (factor) * (angle + gyro * dt ) + (1 - factor) * (x_acc);
其中,factor 为互补滤波因子,定义域:( 0 , 1 )。


the end

本文简单介绍了一阶互补滤波的理论和实现,以期望对刚开始接触数字滤波的朋友有所帮助。

互补滤波使用较多的 mahony 滤波,限于篇幅,另外介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值