逻辑回归算法详解
简介
逻辑回归(Logistic Regression)是一种广泛应用于二分类问题的监督学习算法。尽管名字中带有“回归”,但逻辑回归主要用于分类任务。其基本思想是通过学习数据特征和目标变量之间的关系,预测新的观测数据所属的类别。
逻辑回归模型
逻辑回归模型通过一个逻辑函数(sigmoid函数)将线性回归模型的输出转换为一个介于0和1之间的概率值。模型的基本公式如下:
[ y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n)}} ]
其中:
- ( y ) 是目标变量的预测概率。
- ( x_1, x_2, \ldots, x_n ) 是自变量。
- ( \beta_0 ) 是截距(intercept)。
- ( \beta_1, \beta_2, \ldots, \beta_n ) 是回归系数。
- ( e ) 是自然对数的底。
目标函数和损失函数
逻辑回归的目标是找到最佳的参数 ( \beta_0, \beta_1, \ldots, \beta_n ),使得模型的预测概率尽可能接近实际类别。常用的损失函数是对数损失(Log Loss),也称为二元交叉熵损失(Binary Cross-Entropy Loss):
[ \text{Log Loss} = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] ]
其中:
- ( m ) 是样本数。
- ( y_i ) 是第 ( i ) 个样本的实际类别(0或1)。
- ( \hat{y}_i ) 是第 ( i ) 个样本的预测概率。
参数估计
逻辑回归的参数估计通常通过最大似然估计(Maximum Likelihood Estimation, MLE)来实现。目标是最大化样本数据在模型参数下的似然函数。具体求解过程通常使用数值优化方法,如梯度下降法(Gradient Descent)。
梯度下降法
梯度下降法是一种迭代优化算法,用于最小化损失函数。其基本步骤如下:
- 初始化参数 ( \beta_0, \beta_1, \ldots, \beta_n )。
- 计算损失函数对每个参数的偏导数(梯度)。
- 更新参数:( \beta_j = \beta_j - \alpha \frac{\partial}{\partial \beta_j} \text{Lo