逻辑回归(Logistic Regression)原理、过程

目录

一:逻辑回归简介

二:逻辑回归原理

三:逻辑回归 损失函数

四:逻辑回归 梯度下降算法

五:逻辑回归 过程 


一:逻辑回归简介

Logistic模型是1938年Verhulst-Pearl在修正非密度方程时提出来的,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测,是一个分类算法,常用于二类分类

做二分类问题解决方案:

分类算法、(预测)回归算法

 原理,类似于一个函数,如下图所示

二:逻辑回归原理

下面举个例子

一门考试之前学生的复习时间与这个学生最后是否Pass这门考试的数据如下

hours11.251.51.751.7522.252.533.253.544.254.54.7555.5
pass概率0.090.20.250.270.50.40.430.460.480.490.4980.60.650.70.750.80.9

x:hours表示学生复习时常

z:pass概率

z=ax+b 复习时长与通过概率可以是线性关系

 找到最小损失值:

1 抽取两条数据计算出a和b的值

2 带入所有的数据,计算出y值

3 带入损失函数求出损失值

4 重复 1 2 3

5 直到找到最小损失

若函数原型如下

有y = 1/1+e^-z & z=ax+b

得出下式

b+ax表示问题里的数据只有一个特征,同理如果有多个特征那么z的表达式为(a1x1+b1)+(a2x2+b2)+(...) 

三:逻辑回归 损失函数

损失函数(loss function)或代价函数(cost function)是将随机事件或者有关随机变量的取值映射为非负实数以表示该随机事件的“风险” 或“损失”的函数。在应用中,损失函数通常作为学习准则与优化问题和联系,即通过最小化损失函数求解和评估模型

y = 10+3x;a=3;b=10

X计算出Y实际Y1差值
113130
216142
319201
422211
525250

求解最优解的a b

损失函数:|y-y1|  或  (y-y1)^2

绝对损失函数求和:4

平方损失函数求和:6 

在比如:Y=8+4X;a=4;b=8

X计算出Y实际Y1差值
11213-1
216142
320200
424213
528253

绝对损失函数求和:9

平方损失函数求和:23 

四:逻辑回归 梯度下降算法

梯度下降是求解损失函数的一种最优化算法,通过梯度下降可以快速的计算出最小的损失值(它是基于搜索的最优方法)

梯度下降法(Gradient descent)是一个一阶最优化算法,通常为称为最速下降法;要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索 

学习率:步幅

学习率越小,学习次数越多,计算量越大;

learing_rate也是一个超参

梯度下降算法步骤

1 用随机值初始化权重和偏差

2 把输入传入算法,得出输出值

3 计算预测值和真实值之间的误差

4 对每一个产生误差的特征,调整相应的(权重)值以减小误差

5 重复迭代,直至得到权重的最佳值,使损失值达到最小 

五:逻辑回归 过程 

逻辑回归 训练过程

损失函数:用来描述预测值和实际值的差别

梯度下降:用来将预测值与实际值的差别降低到最小 

逻辑回归 分类过程 

### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于解决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求解出逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求解模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的解释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的解决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于解决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chenruhan_QAQ_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值