查找数组中第K大的元素。
题目最简单做法就是先进行按元素大小递减的快速排序,然后遍历数组走到K下标即为题目所要求。但是这个需要耗费时间是快排O(nlogn)再加上遍历数组到第K个位置。
这样的时间复杂度肯定面试官难以满意。换个思维假如我对整个数组进行堆排序发现其实时间任然是O(nlogn)和快排基本没提高,但是朝着堆的方向是对的了只是建堆时我们只需要对数组K个元素建堆,然后遍历从K+1开始到最后元素,每次对堆顶元素进行比较维护这个K个元素的最小堆,最终堆顶元素即为我们要找的第K大元素。时间复杂度为O(nlogK)。
代码实现:
#include <iostream>
using namespace std;
int leftPlace(int i)
{
return 2*i;
}
int rightPlace(int i)
{
return 2*i+1;
}
void swap(int &a,int &b)
{
int temp=a;
a=b;
b=temp;
}
void MIN_HEAPIFY(int *A,int i,int heap_size)
{
int left,right,min;
left=leftPlace(i);
right=rightPlace(i);
if (left>heap_size)
{
return;
}
if (left<= heap_size&& A[left]<A[i])
{
min=left;
}
else
{
min=i;
}
if (right<=heap_size&&A[right]<A[min])
{
min=right;
}
if (min!=i)
{
swap(A[i],A[min]);
MIN_HEAPIFY(A,min,heap_size);
}
else
{
i++;
MIN_HEAPIFY(A,i,heap_size);
}
}
void build_MIN_HEAP(int *A,int len)
{
for (int i=len/2;i>=1;i--)
{
MIN_HEAPIFY(A,i,len);
}
}
void Print_HEAPED_ARRAY(int *A,int len)
{
cout<<"建堆后的数组为:\n";
for (int i=1;i<=len;i++)
{
cout<<A[i]<<" ";
}
cout<<endl;
}
void findKthelement(int *A,int k,int len)
{
for (int i=k+1;i<=len;i++)
{
if (A[i]>A[1])
{
swap(A[i],A[1]);
MIN_HEAPIFY(A,1,k);
}
}
}
int main()
{
cout<<"input K number and ArraySize"<<endl;
int K,ArraySize;
cin>>K>>ArraySize;
int *A=new int[ArraySize+1];
//数组结点从i=1下标开始存方便计算左右子结点
for (int i=1;i<=ArraySize;i++)
{
cin>>A[i];
}
build_MIN_HEAP(A,K);
Print_HEAPED_ARRAY(A,K);
findKthelement(A,K,ArraySize);
cout<<"the Kth element \n";
cout<<A[1]<<endl;
}