【递归法前序遍历】
Stack<TreeNode> stack = new Stack<>();
List<Integer> list = new ArrayList<>();
TreeNode p = root;
if(p==null)
return list;
stack.push(p);
while(stack.size()>0){
p = stack.pop();
list.add(p.val);
if(p.right != null)
stack.push(p.right);
if(p.left != null)
stack.push(p.left);
}
return list;
【中序遍历遍历】
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode p = root;
while(p != null ||stack.size()>0){
if( p != null){
stack.push(p);
p = p.left;
}else{
p = stack.peek();
stack.pop();
list.add(p.val);
p = p.right;
}
}
return list;
}
【后序遍历】
前序 - > [ 中,左,右] 后序 -> [左,右, 中]
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if (root == NULL) return result;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)
if (node->right) st.push(node->right); // 空节点不入栈
}
reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了
return result;
}
};
# 用栈实现
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
if (root == null) {
return res;
}
Deque<TreeNode> stack = new LinkedList<TreeNode>();
TreeNode prev = null;
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if (root.right == null || root.right == prev) {
res.add(root.val);
prev = root;
root = null;
} else {
stack.push(root);
root = root.right;
}
}
return res;
}
}
prev标记是否是从右子树访问完成后,再进入根节点,因为
- 左子树访问完成,回到根节点,再访问右子树,此时不打印根节点
- 右子树访问完成,回到根节点,打印根节点,prev就是判断是都相等
【统一风格前中后】
//========================前序=============
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> st = new Stack<>();
if (root != null) st.push(root);
while (!st.empty()) {
TreeNode node = st.peek();
if (node != null) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node.right!=null) st.push(node.right); // 添加右节点(空节点不入栈)
if (node.left!=null) st.push(node.left); // 添加左节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.peek(); // 重新取出栈中元素
st.pop();
result.add(node.val); // 加入到结果集
}
}
return result;
}
}
// =======================中序=================
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node.right!=null) st.push(node.right); // 添加右节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node.left!=null) st.push(node.left); // 添加左节点(空节点不入栈)
// =======================后序=================
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
st.push(node); // 添加中节点
st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node.right!=null) st.push(node.right); // 添加右节点(空节点不入栈)
if (node.left!=null) st.push(node.left); // 添加左节点(空节点不入栈)
【思路】栈里面红色节点,表示的就是,当前前一个节点还没有访问,两个一起出栈,访问前一个节点,只有红色出栈了,再往里面加,所以根据前中后顺序可以统一遍历