【故障诊断】BP神经网络分类识别(含最优隐藏层节点确定)

BP神经网络,全称为Backpropagation Neural Network,是人工神经网络的一种典型模型,主要用于非线性数据的分类和预测任务。这种网络结构基于反向传播的学习算法,通过不断调整权重来最小化预测误差,从而提高预测准确性。

BP神经网络隐层节点数的确定是神经网络设计中非常重要的一个环节,一个具有无限隐层节点的两层 BP 网络可以实现任意从输入到输出的非线性映射。但对于有限个输入到输出的映射,并不需要无限个隐层节点,这就涉及到如何选择隐层节点数的问题。

一般有如下三种方法确定:

构造法

首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。

删除法

单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。

黄金分割法

算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间b,c,在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。

图片

BP算法中,权值和阈值是每训练一次,调整一次。逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。

一般在BP网络编程时,我们基本是随意指定一个隐藏层节点数比如6或者10,对网络的准确率有一定影响,为此本文采用编程的方式确定了最佳隐藏层节点数目。对应BP神经网络的正确运用提供了参考。

02 效果图展示:

阿基米德算法优化的BP(Back Propagation,反向传播)神经网络在故障识别数据分类中的应用称为AOA-BP(Adaptive Optimal Annealing Back Propagation)。其原理和流程主要包括以下几个步骤: 1. **模型初始化**:首先建立一个BP神经网络,包输入层、隐藏层和输出层。每个节点通常采用Sigmoid函数作为激活函数。 2. **预处理数据**:对故障识别的数据集进行预处理,包括归一化或标准化,以便让网络更好地学习特征。 3. **训练过程**:利用阿基米德优化算法(如模拟退火法的一种变种),改进了传统的BP算法。AOA通过自适应地调整学习速率,防止陷入局部最优,并增加全局搜索的能力,帮助网络更高效地寻找权重的最佳组合。 4. **适应性温度控制**:AOA-BP会随着迭代次数降低逐渐减小“温度”,模拟物质冷却过程中原子排列的优化过程,使得权重更新更加精准。 5. **前向传播和反向传播**:在每次迭代中,先进行前向传播计算预测值,然后根据实际结果和预测之间的误差进行反向传播,调整各节点之间的连接权重。 6. **错误分析与权重更新**:根据反向传播得到的梯度信息,更新神经元的权重,这个过程不断迭代直至网络性能达到预期或达到预设的最大迭代次数。 7. **测试与验证**:在训练完成后,用未见过的测试数据评估模型的泛化能力,检查分类效果是否良好。 8. **诊断和决策**:当新的故障数据输入网络,经过处理后,输出对应类别的概率,最终进行故障类别判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值