文章目录
一、 简介
Numpy数组支持很多数学运算,运算函数都被成为ufunc。
ufunc是universal function的缩写,是对数组的每个元素进行运算的函数。
NumPy内置的许多ufunc函数都是用C语言实现的,因此它们的计算速度非常快。
ufunc的特点:
- 对数组逐个元素进行运算
- ufunc速度比循环和列表推导式都快的多
- ufunc函数会自动对维度不同的数组进行广播
二、 思维导图

三、 Numpy数组函数
1. 基本运算
1.1 四则运算
逐个元素做运算,得到新的数组。
y=x1+x2或者y=np.add(x1,x2):加法y=x1-x2或者y=np.subtract(x1,x2):减法y=-x或者np.negative(x):负值y=x1*x2或者y=np.multiply(x1,x2):乘法y=x1/x2或者np.divide(x1,x2):除法y=x1//x2或者np.floor_divide(x1,x2):整除y=x1**x2或者np.power(x1,x2):乘方y=x1%x2或者np.mod(x1,x2):求余
逐个元素运算,自动广播(广播见本文第5节),示例如下:
>>> x1=np.array([[0,1],[2,3]])
>>> x2=np.array([[2,2],[3,3]])
>>> x1+x2
array([[2, 3],
[5, 6]])
>>> np.add(x1,x2) #注意不能用x1.add(x2)
array([[2, 3],
[5, 6]])
>>> x1+1 #常量广播
array([[1, 2],
[3, 4]])
>>> x1+np.array([2,1]) #广播
array([[2, 2],
[4, 4]])
1.2 比较运算
返回每个元素运算后得到的布尔数组。
y = x1==x2或者np.equal(x1,x2):相等判断y = x1!=x2或者np.not_equal(x1,x2):不相等判断y = x1<x2或者np.less(x1,x2):小于判断y = x1<=x2或者np.less_equal(x1,x2):小于等于判断y = x1>x2或者np.greater(x1,x2):大于判断y = x1>=x2或者np.greater_eaual(x1,x2):大于等于判断
逐个元素运算,示例如下:
>>> x1=np.array([[0,1],[2,3]])
>>> x2=np.array([[3,1],[2,0]])
>>> x1 == x2
array([[False, True],
[ True, False]])
>>> x1 == 2 #常量广播
array([[False, False],
[ True, False]])
>>> x1 == np.array([2,1]) #广播
array([[False, True],
[ True, False]])
1.3 布尔运算
python中的and,or,not等关键字无法重载,所以numpy数组不能用and,or,not进行布尔运算。
np.all(a):是否数组所有元素是Truenp.any(a):是否任意元素是Truenp.logical_not(a==a)np.logical_and(a==b,a>b)np.logical_or(a==b,a>b)np.logical_xor(a==b,a>b)
示例如下:
>>> x1=np.array([[0,1],[2,3]])
>>> x2=np.array([[3,1],[2,0]])
>>> np.all(x1)
False
>>> np.any(x1)
True
>>> np.logical_and(x1,x2) #0被认为是False,其他被认为是True
array([[False, True],
[ True, False]])
>>> x1==x2
array([[False, True],
[ True, False]])
>>> x1 > x2
array([[False, False],
[False, True]])
>>> np.logical_or(x1>x2,x1==x2)
array([[False, True],
[ True, True]])
1.4 位运算
位运算符对每个元素进行运算。可以用~, &, |, ^等操作符。也可以使用bitwise_开头的ufunc。
~a或者np.bitwise_not(a):按位非运算a&b或者np.bitwise_and(a,b):按位与运算a|b或者np.bitwise_or(a,b):按位或运算a^b或者np.bitwise_xor(a,b):按位异或运算
示例如下:
>>> x1=np.array([[0,1],[2,3]])
>>> x2=np.array([[3,1],[2,0]])
>>> ~x1
array([[-1, -2],
[-3, -4]], dtype=int32)
>>> x1 & x2
array([[0, 1],
[2, 0]], dtype=int32)
>>> x1 | x2
array([[3, 1],
[2, 3]], dtype=int32)
>>> x1 ^ x2
array([[3, 0],
[0, 3]], dtype=int32)
2. 自定义ufunc
python中也可以自定义ufunc,比直接使用python函数速度要快。方法如下:
- 定义任意函数f()
- 函数的参数列表数量的确定方法
- 方法一:f()与目标ufunc参数数量相同
- 方法二:运算时指定部分参数。yfunc1=yfunc(x, 0.1, 0.2)
- 函数的参数列表数量的确定方法
- 转换为ufunc
- 方法1:yfun = np.frompyfunc(f, 1, 1) :参数为输入输出参数个数
- 方法2: yfunc = np.vectorize(f, otypes=[np.float])
- 计算 y = yfun(x)
- y.astype(np.float):返回类型为object时,可以转为float
示例如下:
#1.定义函数
>>> def fsum2(x1, x2):
... return x1 + x2/2
>>> x1 = np.array([1,2])
>>> x2 = np.array([2,2])
#2.转换ufunc方法一
>>> yfun1 = np.frompyfunc(fsum2, 2, 1)
>>> yfun1(x1,x2) #可以用_.astype(np.float)转换object为float类型
array([2.0, 3.0], dtype=object)
#3.转换ufunc方法二
>>> yfun2 = np.vectorize(fsum2, otypes=[np.float16])
>>> yfun2(x1,x2)
array([2., 3.], dtype=float16)
3. ufunc广播
ufunc计算需要计算数组形状相同。对于不同形状的数组,则会尝试转换为相同形状后再运算。
ufunc自动对计算数组形状进行扩展的过程,称为广播。
- 最简单的广播:数组与常量的运算
- 最经典广播案例 :行向量与列向量形状分别为(M,) (1,N) 运算后得到(M,N)形状数组
3.1 广播的步骤及条件
步骤
- 数组扩展为相同的维度
- 所有数组都向维度最多的数组看齐
- 维度不足的部分通过前面加1个维度补齐(增加的维度长度为1)
- 如
[1,2]增加第0维[[1,2]],增加第1维[[1],[2]]
- 对长度为1的维度进行repeat复制操作,使对应维度长度相同
可广播条件
- 维度扩展后并可以repeat到形状相同,是数组可广播的基本要求
- 如果两个数组某个维度上长度不同,必须有一个长度为1才能repeat。
- 数组形状(3,1)可以repeat到(3,4)
- 数组形状(3,2)不能repeat到(3,4)
示例:
>>> x1=np.array([1,2]) #shape为(2,)
>>> x2=np.array([[1,2],[3,4]]) #shape为(2,2)
#x1扩展为(2,2)的过程
#1. x1前面加一个维度,变为[[1,2]] 形状为(1,2)
#2. repeat复制长度为1的维度。变为[[1,2],[1,2]] 形状为(2,2)
>>> x1+x2
array([[2, 4],
[4, 6]])
3.2 创建可广播数组
可广播数组即只进行广播第一步操作,数组扩展到相同的维度,但是形状不同。
3.2.1 ogrid
ogrid可以根据指定范围,创建可广播的二维数组
>>> x,y = np.ogrid[:3,:3] #注意是方括号
>>> x
array([[0],
[1],
[2]])
>>> y
array([[0, 1, 2]])
>>> x + y #运算中自动广播
array([[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])
实际上就是创建"2维列向量+2维行向量"
3.2.2 一维数组手工创建可广播数组
根据ogrid结果,可以看出一维数组转换为二维行、列向量就可以广播了。
expand_dims增加维度
>>> a=np.array([1,2,3])
>>> np.expand_dims(a,0) #扩展为1行n列
array([[1, 2, 3]])
>>> np.expand_dims(a,1) #扩展为n行1列
array([[1],
[2],
[3]])
用None下标增加维度
>>> a[None,:] #扩展为1行n列
array([[1, 2, 3]])
>>> a[:,None] #扩展为n行1列
array([[1],
[2],
[3]])
用np.ix_增加维度
>>> x,y=np.ix_(a,a)
>>> x
array([[1],
[2],
[3]])
>>> y
array([[1, 2, 3]])
3.2.3 创建广播后的数组
mgrid根据范围创建广播后的数组
相比ogrid,mgrid更进一步,执行了广播的扩展维度和repeat两步操作。
>>> x,y = np.mgrid[:3,:3] #创建ogrid[:3,:3]广播之后得到的数组
>>> x #列向量扩展列数
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2]])
>>> y #行向量扩展行数
array([[0, 1, 2],
[0, 1, 2],
[0, 1, 2]])
meshgrid根据已有数组创建广播后的数组
计算两个一维数组广播后得到的数组
>>> a=np.array([10,20])
>>> b=np.array([0,1,2])
>>> x,y=np.meshgrid(a,b)
>>> x
array([[10, 20],
[10, 20],
[10, 20]])
>>> y
array([[0, 0],
[1, 1],
[2, 2]])
4. ufunc的方法
函数自身的函数
4.1 reduce
按指定的维度依次计算,比如:累加,累减。指定的维度长度运算后变为1。结果比输入维度减少
>>> a=np.array([[ 0, 1, 2, 3],
... [ 4, 5, 6, 7],
... [ 8, 9, 10, 11],
... [12, 13, 14, 15]])
>>> np.add.reduce(a)
array([24, 28, 32, 36])
>>> np.add.reduce(a)
array([24, 28, 32, 36])
>>> np.subtract.reduce(a)
array([-24, -26, -28, -30])
两个输入一个输出的ufunc都可以进行reduce操作。比如:
- np.subtract.reduce(a):第0个元素依次减其他元素
- np.multiply.reduce(a):第0个元素依次乘其他元素
- np.divide.reduce(a):第0个元素依次除其他元素
- …
- np.logical_and.reduce(a)
- …
- np.bitwise_and.reduce(a)
- …
4.2 accumulate
根据指定维度,对当前位置之前的元素进行累计计算,结果和输入维度相同
>>> a=np.array([[ 0, 1, 2, 3],
... [ 4, 5, 6, 7],
... [ 8, 9, 10, 11],
... [12, 13, 14, 15]])
>>> np.add.accumulate(a)
array([[ 0, 1, 2, 3],
[ 4, 6, 8, 10],
[12, 15, 18, 21],
[24, 28, 32, 36]], dtype=int32)
>>> np.add.accumulate(a,axis=1)
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38],
[12, 25, 39, 54]], dtype=int32)
两个输入一个输出的ufunc都可以进行accumulate操作。比如:
- np.subtract.accumulate(a):第0个元素依次减其他元素
- np.multiply.accumulate(a):第0个元素依次乘其他元素
- np.divide.accumulate(a):第0个元素依次除其他元素
- …
- np.logical_and.accumulate(a)
- …
- np.bitwise_and.accumulate(a)
- …
4.3 outer
np.add.outer(a,b):a中每一个元素,依次对b中的每个元素进行运算。
(M,N)形状数组和(J,K)形状数组运算后形状为(M,N,J,K)
>>> a=np.array([[10,20],[2,4]])
>>> b=np.array([1,2,3])
>>> np.add.outer(a,b)
array([[[11, 12, 13],
[21, 22, 23]],
[[ 3, 4, 5],
[ 5, 6, 7]]])
两个输入一个输出的ufunc都可以进行outer操作。比如:
- np.subtract.outer(a):第0个元素依次减其他元素
- np.multiply.outer(a):第0个元素依次乘其他元素
- np.divide.outer(a):第0个元素依次除其他元素
- …
- np.logical_and.outer(a)
- …
- np.bitwise_and.outer(a)
- …
5. ufunc广播特例
针对一维向量,以下操作结果相同。
5.1 行向量和列向量自动广播
>>> a=np.array([[10],[20]])
>>> b=np.array([0,1,2])
>>> a+b
array([[10, 11, 12],
[20, 21, 22]])
5.2 创建可广播数组
根据范围用ogrid创建
>>> x,y=np.ogrid[10:30:10,:3]
>>> x
array([[10],
[20]])
>>> y
array([[0, 1, 2]])
>>> x+y
array([[10, 11, 12],
[20, 21, 22]])
expand_dims扩展维度为可广播数组
>>> a=np.expand_dims(np.array([10,20]),1)
>>> a
array([[10],
[20]])
>>> b=np.array([0,1,2])
>>> b
array([0, 1, 2])
>>> a+b
array([[10, 11, 12],
[20, 21, 22]])
None下标扩展维度为可广播数组
>>> a=np.array([10,20])
>>> b=np.array([0,1,2])
>>> a[:,None]
array([[10],
[20]])
>>> b[None,:]
array([[0, 1, 2]])
>>> a[:,None]+b[None,:]
array([[10, 11, 12],
[20, 21, 22]])
np.ix_扩展维度为可广播数组
>>> a=np.array([10,20])
>>> b=np.array([0,1,2])
>>> x,y=np.ix_([10,20],[0,1,2])
>>> x
array([[10],
[20]])
>>> y
array([[0, 1, 2]])
>>> x+y
array([[10, 11, 12],
[20, 21, 22]])
5.3 根据范围创建广播后数组
根据范围创建
>>> x,y=np.mgrid[10:30:10,:3]
>>> x
array([[10, 10, 10],
[20, 20, 20]])
>>> y
array([[0, 1, 2],
[0, 1, 2]])
根据已有数组创建
>>> x,y=np.meshgrid([0,1,2],[10,20])
>>> x
array([[0, 1, 2],
[0, 1, 2]])
>>> y
array([[10, 10, 10],
[20, 20, 20]])
5.4 outer方法模拟向量广播
>>> np.add.outer([10,20],[0,1,2])
array([[10, 11, 12],
[20, 21, 22]])
个人总结,部分内容进行了简单的处理和归纳,如有谬误,希望大家指出,持续修订更新中。
修订历史版本见:https://github.com/hustlei/AI_Learning_MindMap
未经允许请勿转载。
本文详细介绍了Numpy数组的各种运算,包括基本运算如四则运算、比较运算等,自定义ufunc函数,以及ufunc的广播特性等内容。此外还讲解了ufunc的一些方法如reduce、accumulate和outer。
1189

被折叠的 条评论
为什么被折叠?



