从头到尾理解假设检验

背景知识

1. 统计分析的一些重要概念

统计学目标

研究总体的差异,从差异中获得关于总体的信息。

  • 总体的同质性
    个体能构成总体,必定有共性。例如成年男性这个总体里,个体的身高,体重会集中在一个区域,例如:成年男性身高的均值为175cm。
  • 总体的变异
    个体与个体之间并不会完全相同,而是存在个体差异。这种差异能为我们提供一些关于这个总体的信息。例如:成年男性身高的方差为3.5cm。这个量向我们提供了关于总体的身高特征的一些更有意义的信息。
重要概念:总体与样本
  • 一般而言,总体是难以完全统计的。但是可以通过总体中的部分样本的样本统计量来推测出总体参数
  • 样本统计量总体参数的计算基本一致,不同的名称是想强调他们一个对应的是样本,一个对应的是总体。
  • 通过样本推测总体是一个非常重要且核心的统计学内容,重点关心的是总体!!对样本进行统计分析不是最终目的,而是一种推测出总体参数的手段
统计分析
  • 统计描述
    • 定义:
      用统计量来描述一批数据,以获得更多关于此数据的直观信息。(均值,方差,中位数…)
    • 集中趋势(同质性)
      均值,中位数…
    • 离散趋势(变异)
      方差(分散度),标准差…
  • 统计推断
    • 假设检验
      • 假设检验是内曼-皮尔逊提出的。内曼认为,要想让显著性检验有意义,至少要有两个可能的假设。被检验的假设为“零假设”,其他假设为“备择假设”。此处p用于检测零假设是否成立。
      • 显著性检验是费希尔提出的。目前使用的多种显著性检验方法都可以在其专著《研究工作者的统计方法》中找到。其中的核心概念是p值(判断显著性的概率),通过显著性检验可以获得三个结论:p小于通常0.01,宣布检验出一个影响因素;p大于通常0.2,影响因素即使存在也微小,不能通过当前实验检测出来;p介于两者之间,需进一步设计实验验证。当然,任何统计方法几乎都有不适用的情况。

2. 正态分布

概率密度函数
  • f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=σ2π 1e2σ2(xμ)2

  • 对于连续变量(变量的取值范围是一个连续的区间)而言,区间概率才具有实际意义,点概率恒等于0。

  • 区间概率:概率密度函数在区间内积分。(曲线下面积)

均值和方差
  • 影响概率密度函数的位置和开口大小:
    • 均值: 概率密度函数取最大值处,对称轴的位置。
    • 方差( σ 2 \sigma^2 σ2): 概率密度函数的分散程度,越大,说明变量越分散,对应的函数形状越低胖。
    • 标准差( σ \sigma σ)
标准化(z-score)
  • 把任意正态分布转换为均值为0,方差为1的标准正态分布。

    z = x − μ σ z=\frac{x-\mu}{\sigma} z=σxμ

    其中:

    μ = 1 m ∑ i = 1 m x i \mu=\frac{1}{m}\sum_{i=1}^mx_i μ=m1i=1mxi

    σ 2 = 1 m − 1 ∑ i = 1 m ( x i − μ ) 2 \sigma^2=\frac{1}{m-1}\sum_{i=1}^m(x_i-\mu)^2 σ2=m11i=1m(xiμ)2

    (见下文:计算样本方差时为什么是除以(m-1))

  • 标准化以方便统一计算:

P ( x 1 < X < x 2 ) = P ( Z < x 2 − μ σ ) − P ( Z < x 1 − μ σ ) P(x_1<X<x_2)=P(Z<\frac{x_2-\mu}{\sigma}) -P(Z<\frac{x_1-\mu}{\sigma}) P(x1<X<x2)=P(Z<σx2μ)P(Z<σx1μ)

(右边两项的值查表可知)

68%( 1 σ 1\sigma 1σ) → \rightarrow 95%( 2 σ 2\sigma 2σ) → \rightarrow 99.7%( 3 σ 3\sigma 3σ)

μ ± 1 σ \mu\pm1\sigma μ±1σ :

  • 积分占68%的面积.
  • P ( μ − σ < X < μ + σ ) = 0.68 P(\mu-\sigma<X<\mu+\sigma)=0.68 P(μσ<X<μ+σ)=0.68.
  • 68%的样本值集中在离均值一个标准差之内的范围里.

μ ± 2 σ \mu\pm2\sigma μ±2σ μ ± 3 σ \mu\pm3\sigma μ±3σ 同上。

3. 抽样分布

中心极限定理(central limit theorem)

https://mp.weixin.qq.com/s/KK0kdNSMQX8SDaw6BfMzrw
无论总体的原始分布是什么,只要从总体中抽样出足够多的样本(一般 n > 30 n>30 n>30),则其计算出的样本均值(是一种样本统计量)满足正态分布。
且如果总体的均值为 μ \mu μ, 标准差为 σ \sigma σ,则由抽样样本计算出的样本均值 X ˉ \bar{X} Xˉ 服从 N ( μ , σ n ) N(\mu,\frac{\sigma}{\sqrt{n}}) N(μ,n σ)

X X X: 总体。

μ , σ \mu,\sigma μσ: 总体的均值和标准差。

n n n: 一个样本中个体的数目。

X ˉ \bar{X} Xˉ: 样本均值。

S S S: 样本标准差。

E ( X ) = μ E(X)=\mu E(X)=μ

E ( X ˉ ) = μ E(\bar{X})=\mu E(Xˉ)=μ ( 注意:这里是样本均值的均值

D ( X ˉ ) = σ n D(\bar{X})=\frac{\sigma}{\sqrt{n}} D(Xˉ)=n σ ( 注意:这里是样本均值的标准差。我们只关心样本统计量的分布,即抽样分布,而不关心样本的分布。)

例子:计算样本方差时为什么是除以(n-1)
  • 目标:
    样本的均值和标准差 → \rightarrow 总体的均值和标准差

  • 重要估计原则之一:
    无偏:样本估计值在总体真实值的上下波动。

  • 除以n的问题:

∑ i = 1 n ( x i − x ˉ ) 2 < ∑ i = 1 n ( x i − μ ) 2 \sum_{i=1}^n(x_i-\bar{x})^2<\sum_{i=1}^n(x_i-\mu)^2 i=1n(xixˉ)2<i=1n(xiμ)2 (推导得出,见下)

可推导出:

1 n ∑ i = 1 n ( x i − x ˉ ) 2 < 1 n ∑ i = 1 n ( x i − μ ) 2 \frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2<\frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2 n1i=1n(xixˉ)2<n1i=1n(xiμ)2

违背了无偏的原则,为了纠正,通过计算有:

∑ i = 1 n ( x i − x ˉ ) 2 = n − 1 n ∑ i = 1 n ( x i − μ ) 2 \sum_{i=1}^n(x_i-\bar{x})^2=\frac{n-1}{n}\sum_{i=1}^n(x_i-\mu)^2 i=1n(xixˉ)2=nn1i=1n(xiμ)2

因此,求样本方差时:

S = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 S=\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2 S=n11i=1n(xixˉ)2

或者,

S = 1 n ∑ i = 1 n ( x i − μ ) 2 S=\frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2 S=n1i=1n(xiμ)2

(样本均值和总体均值所引起的不同)

具体推导过程请参考这里

假设检验

有了基本的关于总体 vs. 样本,正态分布,抽样分布等概念以后,假设检验理解起来会更加容易。

目的

为了验证一个猜想,我们可以提出一个假设。计算在这个假设成立的前提下,我们观察到的发生的事件的概率。若概率很小,说明基于现实发生的事件,这个假设很可能不成立,拒绝这个假设;若概率较大,则不能拒绝这个假设。(类似反证法)
例如:
发生事件:我有一枚硬币,投掷10次,1次正面朝上。
猜想:这枚硬币不均匀,正反面概率不相等。
零假设:硬币均匀,正反面概率相等。
计算:在硬币均匀的情况下,投掷10次, 1次或0次正面向上的概率。
通过计算得到P = P(投掷10次,1次正面朝上) + P(投掷10次,0次正面朝上)
p value:发生的事件和更罕见的事件的概率和
分析:P和检验标准 α \alpha α 比较,以决定是否拒绝零假设。

过程

1. 建立检验假设
  • 零假设( H 0 H_0 H0):“没有差异” “无效” “相互独立”
  • 备择假设( H 1 H_1 H1):
2. 确定检验标准
  • 定义小概率事件的阈值: α \alpha α
  • 概率小于 α \alpha α 的事件被认为不可能发生。
3. 选择适合的检验统计量
  • 大样本, σ \sigma σ已知: z − t e s t z-test ztest
  • 样本数目较小, σ \sigma σ未知: t − t e s t t-test ttest
    (具体分析见后文)https://blog.csdn.net/tianguiyuyu/article/details/80789856
4. 推断
  • 由计算出的score求得相应的p value
  • 对比p value和检验标准 α \alpha α
  • 拒绝 or 接受零假设

p value

1. 意义
  • p value并不是一个点概率,而是一个区间概率。因为对于连续变量,点概率为0。
  • 代表了 H 0 H_0 H0成立的情况下,获得现在和更极端样本的概率
  • 代表了 H 0 H_0 H0成立的情况下,发生现在观测到的事件和更罕见的事件的概率和
  • 例子:
    p value: 硬币均匀的情况下( H 0 H_0 H0),投掷10次,正面朝上的次数小于等于1的概率。
2. 用法( 检验标准 α \alpha α
  • p value越小, H 0 H_0 H0成立的情况下,越难获得现在和更极端的样本。说明基于已有的数据, H 0 H_0 H0更有可能不成立,倾向于拒绝 H 0 H_0 H0
  • α \alpha α: 小概率事件的概率阈值,检验标准。若p value比 α \alpha α 小,说明 H 0 H_0 H0 成立的情况下,获得现在和更极端的样本是一个小概率事件,基本不可能发生。但是现在发生了,反推说明 H 0 H_0 H0可能不成立。

错误

1. 第一类错误

若把零假设 H 0 H_0 H0 假设成立看作是阴性(“没有差异” “无效” “相互独立”),备择假设 H 1 H_1 H1看作是阳性,则:

  • 第一类错误:False Positive
    H 0 H_0 H0 原本成立,但是因为抽样获得的样本和更极端的样本,在 H 0 H_0 H0 对应的分布下计算出的概率较低,我们错误地拒绝了 H 0 H_0 H0
  • α \alpha α :若拒绝 H 0 H_0 H0 假设,犯错第一类错误的最大允许概率。
2. 第二类错误
  • 第二类错误: False Negative
    H 0 H_0 H0 原本不成立,但是因为真实概率分布和 H 0 H_0 H0的概率分布有重叠,导致从真实分布中抽样获得的样本和更极端的样本,离零假设分布的距离比较近,计算出的概率高,因此我们错误地接受了 H 0 H_0 H0
3. 图解(检验功效)

https://images.app.goo.gl/XZSf833L9MgsTzfb9

  • 检验功效(power):
    • 1 − β 1-\beta 1β
    • 不犯第二类错误的概率
    • 真实概率分布与零假设对应的概率分布重叠得越少,越不容易犯第二类错误,检验功效越大。

4. 减少错误

  • 调整 α \alpha α
    可减少一类错误,但同时会增加另外一类错误发生的概率。

  • 增加样本量:

    • 可同时减小第一、二类错误

    • 原理: D ( X ˉ ) = S n D(\bar{X})=\frac{S}{\sqrt{n}} D(Xˉ)=n S (标准误:样本统计量的标准差,可以通过 【样本标准差 ÷ \div ÷样本的个体数目开根】获得)

      增大样本量 n 可以减少样本统计量的分散度。若 H 0 H_0 H0 不成立,那么分散度的减小意味着使真实分布和 H 0 H_0 H0分布的重叠部分变小。

检验统计量

背景
  • 本质是样本统计量,用来对原假设和备择假设做出决策。

  • 是对总体参数的点估计量
    基于总体的一个样本计算得到的。若抽样 k 个样本,每个样本都会产生一个样本统计量,这些统计量(点)会服从一个抽样分布。

  • 点估计量不能直接作为检验的统计量,只有将其标准化后,才能用于度量它与原假设的参数值之间的差异程度。

  • 把估计值(样本统计量)和假设值(零假设对应的总体参数)之间的差异标准化。
    如果样本真的是从零假设所对应的分布中抽样得到,那么样本统计量应该服从 N ( μ ,   σ / n ) N(\mu,\ \sigma/\sqrt{n}) N(μ, σ/n )
    标准化后得到的score可以用于表示样本统计量和这个应该服从的分布的差异。差异越大,说明样本统计量很大可能并不符合 N ( μ ,   σ / n ) N(\mu,\ \sigma/\sqrt{n}) N(μ, σ/n )。也就可以推出,样本可能并不是从假设分布中抽样得出,即假设可能不成立。

1. z-test
  • 用标准z变换来标准化点估计量和假设值之间的差异

  • Z = 样 本 统 计 量 − 假 设 分 布 的 对 应 统 计 量 标 准 误 Z=\frac{样本统计量-假设分布的对应统计量}{标准误} Z=

  • z变换适用于已知总体的标准差 σ \sigma σ。可用总体的标准差来估计样本统计量的标准误。

  • 例如:
    Z = X ˉ − μ σ / n Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} Z=σ/n Xˉμ

2. t-test
  • 用t检验公式来标准化点估计量和假设值之间的差异
  • t = 样 本 统 计 量 − 假 设 分 布 的 对 应 统 计 量 标 准 误 t=\frac{样本统计量-假设分布的对应统计量}{标准误} t=
  • t变换适用于未知总体的标准差 σ \sigma σ。此时,可用样本的标准差S来估计样本统计量的标准误。
  • 当样本量较小时(一个样本包含的个体数 < < < 30),用 t 检验可以缓解小数据量带来的分散度比实际偏大的问题。(t检验使用自由度来平衡,自由度小时,对应的只是抽样分布会更胖,以匹配小样本计算出的标准误偏大的问题)
  • 当样本量足够大时,由样本计算得到的样本统计量的分散度会与真实的抽样分布相当,因此直接用标准 z 变换即可,不用再使用 t 的自由度去平衡小样本带来的误差。
  • 例如:
    t = X ˉ − μ S / n t=\frac{\bar{X}-\mu}{S/\sqrt{n}} t=S/n Xˉμ
comparison

https://www.zhihu.com/people/xiao-he-29-78-48/posts?page=1

应用

配对样本
  • 配对的两个样本,两个样本中的个体一一对应。
  • 零假设:差的均值服从均值为0的正态分布。
  • 样本统计量:两个样本的对应个体的差的均值
    • d i = s a m p l e i , a f t e r − s a m p l e i , b e f o r e d_i=sample_{i,after}-sample_{i,before} di=samplei,aftersamplei,before

    • d ˉ = 1 n ∑ i = 1 n d i \bar{d}=\frac{1}{n}\sum_{i=1}^n d_i dˉ=n1i=1ndi (关心的统计量)

    • d ˉ \bar{d} dˉ的标准差: S / n S/\sqrt{n} S/n

    • t = X ˉ − μ S / n = X ˉ S / n ∼ t ( n − 1 ) t=\frac{\bar{X}-\mu}{S/\sqrt{n}}=\frac{\bar{X}}{S/\sqrt{n}}\sim t(n-1) t=S/n Xˉμ=S/n Xˉt(n1)

非配对样本
单体检验
  • 单一样本的假设检验
  • 检验单一样本的样本统计量与期望值是否相符
  • 计算样本均值和标准误,检验样本均值和期望的抽样分布间的差异
  • t = X ˉ − μ S / n ∼ t ( n − 1 ) t=\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1) t=S/n Xˉμt(n1)
独立样本:
  • 独立从两个分布中抽样出来的两个样本,数量不用匹配。
  • 检验两个样本对应的两个抽样分布的期望是否相同。
等方差
  • 两个样本的标准差相等。
  • 自由度为 n 1 + n 2 − 2 n_1+n_2-2 n1+n22

    在这里插入图片描述
异方差
  • 两个样本的标准差不同
    在这里插入图片描述
    在这里插入图片描述
双侧检验 vs 单侧检验
  • 双侧检验:无先验知识,更保守,完全反映数据的差异。
  • 单侧检验:有先验知识,已知数据走向。

Reference

浅显易懂的统计学讲解:https://www.zhihu.com/people/xiao-he-29-78-48/posts?page=1
z&t: https://www.jianshu.com/p/c3cffe4a4e84
z&t 图: https://blog.csdn.net/tianguiyuyu/article/details/80789856
https://zhuanlan.zhihu.com/p/145473420
单体与双体检验: http://www.algorithmdog.com/%E7%BB%9F%E8%AE%A1%E5%81%87%E8%AE%BE%E6%A3%80%E9%AA%8C%E4%B8%80t%E6%A3%80%E9%AA%8C
https://www.jianshu.com/p/46d9b111dffc

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值